| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgam1 |  |-  ( log_G ` 1 ) = 0 | 
						
							| 2 | 1 | fveq2i |  |-  ( exp ` ( log_G ` 1 ) ) = ( exp ` 0 ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | 1nn |  |-  1 e. NN | 
						
							| 5 |  | eldifn |  |-  ( 1 e. ( ZZ \ NN ) -> -. 1 e. NN ) | 
						
							| 6 | 4 5 | mt2 |  |-  -. 1 e. ( ZZ \ NN ) | 
						
							| 7 |  | eldif |  |-  ( 1 e. ( CC \ ( ZZ \ NN ) ) <-> ( 1 e. CC /\ -. 1 e. ( ZZ \ NN ) ) ) | 
						
							| 8 | 3 6 7 | mpbir2an |  |-  1 e. ( CC \ ( ZZ \ NN ) ) | 
						
							| 9 |  | eflgam |  |-  ( 1 e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` 1 ) ) = ( _G ` 1 ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( exp ` ( log_G ` 1 ) ) = ( _G ` 1 ) | 
						
							| 11 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 12 | 2 10 11 | 3eqtr3i |  |-  ( _G ` 1 ) = 1 |