| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgam1 |
|- ( log_G ` 1 ) = 0 |
| 2 |
1
|
fveq2i |
|- ( exp ` ( log_G ` 1 ) ) = ( exp ` 0 ) |
| 3 |
|
ax-1cn |
|- 1 e. CC |
| 4 |
|
1nn |
|- 1 e. NN |
| 5 |
|
eldifn |
|- ( 1 e. ( ZZ \ NN ) -> -. 1 e. NN ) |
| 6 |
4 5
|
mt2 |
|- -. 1 e. ( ZZ \ NN ) |
| 7 |
|
eldif |
|- ( 1 e. ( CC \ ( ZZ \ NN ) ) <-> ( 1 e. CC /\ -. 1 e. ( ZZ \ NN ) ) ) |
| 8 |
3 6 7
|
mpbir2an |
|- 1 e. ( CC \ ( ZZ \ NN ) ) |
| 9 |
|
eflgam |
|- ( 1 e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` 1 ) ) = ( _G ` 1 ) ) |
| 10 |
8 9
|
ax-mp |
|- ( exp ` ( log_G ` 1 ) ) = ( _G ` 1 ) |
| 11 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 12 |
2 10 11
|
3eqtr3i |
|- ( _G ` 1 ) = 1 |