| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) | 
						
							| 2 |  | fv0p1e1 |  |-  ( x = 0 -> ( _G ` ( x + 1 ) ) = ( _G ` 1 ) ) | 
						
							| 3 |  | gam1 |  |-  ( _G ` 1 ) = 1 | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( x = 0 -> ( _G ` ( x + 1 ) ) = 1 ) | 
						
							| 5 | 1 4 | eqeq12d |  |-  ( x = 0 -> ( ( ! ` x ) = ( _G ` ( x + 1 ) ) <-> ( ! ` 0 ) = 1 ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = n -> ( ! ` x ) = ( ! ` n ) ) | 
						
							| 7 |  | fvoveq1 |  |-  ( x = n -> ( _G ` ( x + 1 ) ) = ( _G ` ( n + 1 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( x = n -> ( ( ! ` x ) = ( _G ` ( x + 1 ) ) <-> ( ! ` n ) = ( _G ` ( n + 1 ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = ( n + 1 ) -> ( ! ` x ) = ( ! ` ( n + 1 ) ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( x = ( n + 1 ) -> ( _G ` ( x + 1 ) ) = ( _G ` ( ( n + 1 ) + 1 ) ) ) | 
						
							| 11 | 9 10 | eqeq12d |  |-  ( x = ( n + 1 ) -> ( ( ! ` x ) = ( _G ` ( x + 1 ) ) <-> ( ! ` ( n + 1 ) ) = ( _G ` ( ( n + 1 ) + 1 ) ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( x = N -> ( ! ` x ) = ( ! ` N ) ) | 
						
							| 13 |  | fvoveq1 |  |-  ( x = N -> ( _G ` ( x + 1 ) ) = ( _G ` ( N + 1 ) ) ) | 
						
							| 14 | 12 13 | eqeq12d |  |-  ( x = N -> ( ( ! ` x ) = ( _G ` ( x + 1 ) ) <-> ( ! ` N ) = ( _G ` ( N + 1 ) ) ) ) | 
						
							| 15 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 16 |  | oveq1 |  |-  ( ( ! ` n ) = ( _G ` ( n + 1 ) ) -> ( ( ! ` n ) x. ( n + 1 ) ) = ( ( _G ` ( n + 1 ) ) x. ( n + 1 ) ) ) | 
						
							| 17 |  | facp1 |  |-  ( n e. NN0 -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) | 
						
							| 18 |  | nn0p1nn |  |-  ( n e. NN0 -> ( n + 1 ) e. NN ) | 
						
							| 19 | 18 | nncnd |  |-  ( n e. NN0 -> ( n + 1 ) e. CC ) | 
						
							| 20 |  | eldifn |  |-  ( ( n + 1 ) e. ( ZZ \ NN ) -> -. ( n + 1 ) e. NN ) | 
						
							| 21 | 20 18 | nsyl3 |  |-  ( n e. NN0 -> -. ( n + 1 ) e. ( ZZ \ NN ) ) | 
						
							| 22 | 19 21 | eldifd |  |-  ( n e. NN0 -> ( n + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 23 |  | gamp1 |  |-  ( ( n + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` ( ( n + 1 ) + 1 ) ) = ( ( _G ` ( n + 1 ) ) x. ( n + 1 ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( n e. NN0 -> ( _G ` ( ( n + 1 ) + 1 ) ) = ( ( _G ` ( n + 1 ) ) x. ( n + 1 ) ) ) | 
						
							| 25 | 17 24 | eqeq12d |  |-  ( n e. NN0 -> ( ( ! ` ( n + 1 ) ) = ( _G ` ( ( n + 1 ) + 1 ) ) <-> ( ( ! ` n ) x. ( n + 1 ) ) = ( ( _G ` ( n + 1 ) ) x. ( n + 1 ) ) ) ) | 
						
							| 26 | 16 25 | imbitrrid |  |-  ( n e. NN0 -> ( ( ! ` n ) = ( _G ` ( n + 1 ) ) -> ( ! ` ( n + 1 ) ) = ( _G ` ( ( n + 1 ) + 1 ) ) ) ) | 
						
							| 27 | 5 8 11 14 15 26 | nn0ind |  |-  ( N e. NN0 -> ( ! ` N ) = ( _G ` ( N + 1 ) ) ) |