Metamath Proof Explorer


Theorem facgam

Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion facgam N0N!=ΓN+1

Proof

Step Hyp Ref Expression
1 fveq2 x=0x!=0!
2 fv0p1e1 x=0Γx+1=Γ1
3 gam1 Γ1=1
4 2 3 eqtrdi x=0Γx+1=1
5 1 4 eqeq12d x=0x!=Γx+10!=1
6 fveq2 x=nx!=n!
7 fvoveq1 x=nΓx+1=Γn+1
8 6 7 eqeq12d x=nx!=Γx+1n!=Γn+1
9 fveq2 x=n+1x!=n+1!
10 fvoveq1 x=n+1Γx+1=Γn+1+1
11 9 10 eqeq12d x=n+1x!=Γx+1n+1!=Γn+1+1
12 fveq2 x=Nx!=N!
13 fvoveq1 x=NΓx+1=ΓN+1
14 12 13 eqeq12d x=Nx!=Γx+1N!=ΓN+1
15 fac0 0!=1
16 oveq1 n!=Γn+1n!n+1=Γn+1n+1
17 facp1 n0n+1!=n!n+1
18 nn0p1nn n0n+1
19 18 nncnd n0n+1
20 eldifn n+1¬n+1
21 20 18 nsyl3 n0¬n+1
22 19 21 eldifd n0n+1
23 gamp1 n+1Γn+1+1=Γn+1n+1
24 22 23 syl n0Γn+1+1=Γn+1n+1
25 17 24 eqeq12d n0n+1!=Γn+1+1n!n+1=Γn+1n+1
26 16 25 imbitrrid n0n!=Γn+1n+1!=Γn+1+1
27 5 8 11 14 15 26 nn0ind N0N!=ΓN+1