Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | facgam | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | fv0p1e1 | |
|
3 | gam1 | |
|
4 | 2 3 | eqtrdi | |
5 | 1 4 | eqeq12d | |
6 | fveq2 | |
|
7 | fvoveq1 | |
|
8 | 6 7 | eqeq12d | |
9 | fveq2 | |
|
10 | fvoveq1 | |
|
11 | 9 10 | eqeq12d | |
12 | fveq2 | |
|
13 | fvoveq1 | |
|
14 | 12 13 | eqeq12d | |
15 | fac0 | |
|
16 | oveq1 | |
|
17 | facp1 | |
|
18 | nn0p1nn | |
|
19 | 18 | nncnd | |
20 | eldifn | |
|
21 | 20 18 | nsyl3 | |
22 | 19 21 | eldifd | |
23 | gamp1 | |
|
24 | 22 23 | syl | |
25 | 17 24 | eqeq12d | |
26 | 16 25 | imbitrrid | |
27 | 5 8 11 14 15 26 | nn0ind | |