Metamath Proof Explorer


Theorem gamfac

Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamfac N Γ N = N 1 !

Proof

Step Hyp Ref Expression
1 nnm1nn0 N N 1 0
2 facgam N 1 0 N 1 ! = Γ N - 1 + 1
3 1 2 syl N N 1 ! = Γ N - 1 + 1
4 nncn N N
5 1cnd N 1
6 4 5 npcand N N - 1 + 1 = N
7 6 fveq2d N Γ N - 1 + 1 = Γ N
8 3 7 eqtr2d N Γ N = N 1 !