Metamath Proof Explorer


Theorem gamfac

Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamfac NΓN=N1!

Proof

Step Hyp Ref Expression
1 nnm1nn0 NN10
2 facgam N10N1!=ΓN-1+1
3 1 2 syl NN1!=ΓN-1+1
4 nncn NN
5 1cnd N1
6 4 5 npcand NN-1+1=N
7 6 fveq2d NΓN-1+1=ΓN
8 3 7 eqtr2d NΓN=N1!