Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | gamfac | ⊢ ( 𝑁 ∈ ℕ → ( Γ ‘ 𝑁 ) = ( ! ‘ ( 𝑁 − 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
2 | facgam | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑁 − 1 ) ) = ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 − 1 ) ) = ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
4 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
5 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
6 | 4 5 | npcand | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
7 | 6 | fveq2d | ⊢ ( 𝑁 ∈ ℕ → ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( Γ ‘ 𝑁 ) ) |
8 | 3 7 | eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( Γ ‘ 𝑁 ) = ( ! ‘ ( 𝑁 − 1 ) ) ) |