Metamath Proof Explorer


Theorem gamfac

Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamfac ( 𝑁 ∈ ℕ → ( Γ ‘ 𝑁 ) = ( ! ‘ ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
2 facgam ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑁 − 1 ) ) = ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) )
3 1 2 syl ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 − 1 ) ) = ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) )
4 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
5 1cnd ( 𝑁 ∈ ℕ → 1 ∈ ℂ )
6 4 5 npcand ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
7 6 fveq2d ( 𝑁 ∈ ℕ → ( Γ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( Γ ‘ 𝑁 ) )
8 3 7 eqtr2d ( 𝑁 ∈ ℕ → ( Γ ‘ 𝑁 ) = ( ! ‘ ( 𝑁 − 1 ) ) )