Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | gamfac | |- ( N e. NN -> ( _G ` N ) = ( ! ` ( N - 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
2 | facgam | |- ( ( N - 1 ) e. NN0 -> ( ! ` ( N - 1 ) ) = ( _G ` ( ( N - 1 ) + 1 ) ) ) |
|
3 | 1 2 | syl | |- ( N e. NN -> ( ! ` ( N - 1 ) ) = ( _G ` ( ( N - 1 ) + 1 ) ) ) |
4 | nncn | |- ( N e. NN -> N e. CC ) |
|
5 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
6 | 4 5 | npcand | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
7 | 6 | fveq2d | |- ( N e. NN -> ( _G ` ( ( N - 1 ) + 1 ) ) = ( _G ` N ) ) |
8 | 3 7 | eqtr2d | |- ( N e. NN -> ( _G ` N ) = ( ! ` ( N - 1 ) ) ) |