Metamath Proof Explorer


Theorem gamfac

Description: The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gamfac
|- ( N e. NN -> ( _G ` N ) = ( ! ` ( N - 1 ) ) )

Proof

Step Hyp Ref Expression
1 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
2 facgam
 |-  ( ( N - 1 ) e. NN0 -> ( ! ` ( N - 1 ) ) = ( _G ` ( ( N - 1 ) + 1 ) ) )
3 1 2 syl
 |-  ( N e. NN -> ( ! ` ( N - 1 ) ) = ( _G ` ( ( N - 1 ) + 1 ) ) )
4 nncn
 |-  ( N e. NN -> N e. CC )
5 1cnd
 |-  ( N e. NN -> 1 e. CC )
6 4 5 npcand
 |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N )
7 6 fveq2d
 |-  ( N e. NN -> ( _G ` ( ( N - 1 ) + 1 ) ) = ( _G ` N ) )
8 3 7 eqtr2d
 |-  ( N e. NN -> ( _G ` N ) = ( ! ` ( N - 1 ) ) )