Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ! ‘ 𝑥 ) = ( ! ‘ 0 ) ) |
2 |
|
fv0p1e1 |
⊢ ( 𝑥 = 0 → ( Γ ‘ ( 𝑥 + 1 ) ) = ( Γ ‘ 1 ) ) |
3 |
|
gam1 |
⊢ ( Γ ‘ 1 ) = 1 |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( Γ ‘ ( 𝑥 + 1 ) ) = 1 ) |
5 |
1 4
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ! ‘ 𝑥 ) = ( Γ ‘ ( 𝑥 + 1 ) ) ↔ ( ! ‘ 0 ) = 1 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) |
7 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑛 → ( Γ ‘ ( 𝑥 + 1 ) ) = ( Γ ‘ ( 𝑛 + 1 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ! ‘ 𝑥 ) = ( Γ ‘ ( 𝑥 + 1 ) ) ↔ ( ! ‘ 𝑛 ) = ( Γ ‘ ( 𝑛 + 1 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑛 + 1 ) ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( Γ ‘ ( 𝑥 + 1 ) ) = ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ! ‘ 𝑥 ) = ( Γ ‘ ( 𝑥 + 1 ) ) ↔ ( ! ‘ ( 𝑛 + 1 ) ) = ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) |
13 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( Γ ‘ ( 𝑥 + 1 ) ) = ( Γ ‘ ( 𝑁 + 1 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ! ‘ 𝑥 ) = ( Γ ‘ ( 𝑥 + 1 ) ) ↔ ( ! ‘ 𝑁 ) = ( Γ ‘ ( 𝑁 + 1 ) ) ) ) |
15 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
16 |
|
oveq1 |
⊢ ( ( ! ‘ 𝑛 ) = ( Γ ‘ ( 𝑛 + 1 ) ) → ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) = ( ( Γ ‘ ( 𝑛 + 1 ) ) · ( 𝑛 + 1 ) ) ) |
17 |
|
facp1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
18 |
|
nn0p1nn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) |
19 |
18
|
nncnd |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℂ ) |
20 |
|
eldifn |
⊢ ( ( 𝑛 + 1 ) ∈ ( ℤ ∖ ℕ ) → ¬ ( 𝑛 + 1 ) ∈ ℕ ) |
21 |
20 18
|
nsyl3 |
⊢ ( 𝑛 ∈ ℕ0 → ¬ ( 𝑛 + 1 ) ∈ ( ℤ ∖ ℕ ) ) |
22 |
19 21
|
eldifd |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
23 |
|
gamp1 |
⊢ ( ( 𝑛 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) = ( ( Γ ‘ ( 𝑛 + 1 ) ) · ( 𝑛 + 1 ) ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) = ( ( Γ ‘ ( 𝑛 + 1 ) ) · ( 𝑛 + 1 ) ) ) |
25 |
17 24
|
eqeq12d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ! ‘ ( 𝑛 + 1 ) ) = ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) ↔ ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) = ( ( Γ ‘ ( 𝑛 + 1 ) ) · ( 𝑛 + 1 ) ) ) ) |
26 |
16 25
|
syl5ibr |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ! ‘ 𝑛 ) = ( Γ ‘ ( 𝑛 + 1 ) ) → ( ! ‘ ( 𝑛 + 1 ) ) = ( Γ ‘ ( ( 𝑛 + 1 ) + 1 ) ) ) ) |
27 |
5 8 11 14 15 26
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) = ( Γ ‘ ( 𝑁 + 1 ) ) ) |