| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 0 ) ) | 
						
							| 2 |  | fv0p1e1 | ⊢ ( 𝑥  =  0  →  ( Γ ‘ ( 𝑥  +  1 ) )  =  ( Γ ‘ 1 ) ) | 
						
							| 3 |  | gam1 | ⊢ ( Γ ‘ 1 )  =  1 | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( Γ ‘ ( 𝑥  +  1 ) )  =  1 ) | 
						
							| 5 | 1 4 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( ! ‘ 𝑥 )  =  ( Γ ‘ ( 𝑥  +  1 ) )  ↔  ( ! ‘ 0 )  =  1 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 𝑛 ) ) | 
						
							| 7 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑛  →  ( Γ ‘ ( 𝑥  +  1 ) )  =  ( Γ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑥  =  𝑛  →  ( ( ! ‘ 𝑥 )  =  ( Γ ‘ ( 𝑥  +  1 ) )  ↔  ( ! ‘ 𝑛 )  =  ( Γ ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ! ‘ 𝑥 )  =  ( ! ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 10 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( Γ ‘ ( 𝑥  +  1 ) )  =  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( ! ‘ 𝑥 )  =  ( Γ ‘ ( 𝑥  +  1 ) )  ↔  ( ! ‘ ( 𝑛  +  1 ) )  =  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 13 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑁  →  ( Γ ‘ ( 𝑥  +  1 ) )  =  ( Γ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ! ‘ 𝑥 )  =  ( Γ ‘ ( 𝑥  +  1 ) )  ↔  ( ! ‘ 𝑁 )  =  ( Γ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 15 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 16 |  | oveq1 | ⊢ ( ( ! ‘ 𝑛 )  =  ( Γ ‘ ( 𝑛  +  1 ) )  →  ( ( ! ‘ 𝑛 )  ·  ( 𝑛  +  1 ) )  =  ( ( Γ ‘ ( 𝑛  +  1 ) )  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 17 |  | facp1 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ! ‘ ( 𝑛  +  1 ) )  =  ( ( ! ‘ 𝑛 )  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 18 |  | nn0p1nn | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 19 | 18 | nncnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℂ ) | 
						
							| 20 |  | eldifn | ⊢ ( ( 𝑛  +  1 )  ∈  ( ℤ  ∖  ℕ )  →  ¬  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 21 | 20 18 | nsyl3 | ⊢ ( 𝑛  ∈  ℕ0  →  ¬  ( 𝑛  +  1 )  ∈  ( ℤ  ∖  ℕ ) ) | 
						
							| 22 | 19 21 | eldifd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 23 |  | gamp1 | ⊢ ( ( 𝑛  +  1 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) )  =  ( ( Γ ‘ ( 𝑛  +  1 ) )  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) )  =  ( ( Γ ‘ ( 𝑛  +  1 ) )  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 25 | 17 24 | eqeq12d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ! ‘ ( 𝑛  +  1 ) )  =  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) )  ↔  ( ( ! ‘ 𝑛 )  ·  ( 𝑛  +  1 ) )  =  ( ( Γ ‘ ( 𝑛  +  1 ) )  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 26 | 16 25 | imbitrrid | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ! ‘ 𝑛 )  =  ( Γ ‘ ( 𝑛  +  1 ) )  →  ( ! ‘ ( 𝑛  +  1 ) )  =  ( Γ ‘ ( ( 𝑛  +  1 )  +  1 ) ) ) ) | 
						
							| 27 | 5 8 11 14 15 26 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  =  ( Γ ‘ ( 𝑁  +  1 ) ) ) |