Step |
Hyp |
Ref |
Expression |
1 |
|
lgamp1 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ ( 𝐴 + 1 ) ) = ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ ( 𝐴 + 1 ) ) ) = ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) ) |
3 |
|
lgamcl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ℂ ) |
5 |
|
id |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
6 |
5
|
dmgmn0 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ≠ 0 ) |
7 |
4 6
|
logcld |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
8 |
|
efadd |
⊢ ( ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
10 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
11 |
4 6 10
|
syl2anc |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
12 |
11
|
oveq2d |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · 𝐴 ) ) |
13 |
2 9 12
|
3eqtrd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ ( 𝐴 + 1 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · 𝐴 ) ) |
14 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
15 |
14
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 1 ∈ ℕ0 ) |
16 |
5 15
|
dmgmaddnn0 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
17 |
|
eflgam |
⊢ ( ( 𝐴 + 1 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ ( 𝐴 + 1 ) ) ) = ( Γ ‘ ( 𝐴 + 1 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ ( 𝐴 + 1 ) ) ) = ( Γ ‘ ( 𝐴 + 1 ) ) ) |
19 |
|
eflgam |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · 𝐴 ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |
21 |
13 18 20
|
3eqtr3d |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ ( 𝐴 + 1 ) ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |