| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamp1 |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) ) | 
						
							| 3 |  | lgamcl |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) | 
						
							| 4 |  | eldifi |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. CC ) | 
						
							| 5 |  | id |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 6 | 5 | dmgmn0 |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> A =/= 0 ) | 
						
							| 7 | 4 6 | logcld |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log ` A ) e. CC ) | 
						
							| 8 |  | efadd |  |-  ( ( ( log_G ` A ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 9 | 3 7 8 | syl2anc |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 10 |  | eflog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 11 | 4 6 10 | syl2anc |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 12 | 11 | oveq2d |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. A ) ) | 
						
							| 13 | 2 9 12 | 3eqtrd |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( ( exp ` ( log_G ` A ) ) x. A ) ) | 
						
							| 14 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 15 | 14 | a1i |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> 1 e. NN0 ) | 
						
							| 16 | 5 15 | dmgmaddnn0 |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 17 |  | eflgam |  |-  ( ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( _G ` ( A + 1 ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( _G ` ( A + 1 ) ) ) | 
						
							| 19 |  | eflgam |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp ` ( log_G ` A ) ) x. A ) = ( ( _G ` A ) x. A ) ) | 
						
							| 21 | 13 18 20 | 3eqtr3d |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` ( A + 1 ) ) = ( ( _G ` A ) x. A ) ) |