Step |
Hyp |
Ref |
Expression |
1 |
|
lgamp1 |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) |
2 |
1
|
fveq2d |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) ) |
3 |
|
lgamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) |
4 |
|
eldifi |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. CC ) |
5 |
|
id |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
6 |
5
|
dmgmn0 |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> A =/= 0 ) |
7 |
4 6
|
logcld |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log ` A ) e. CC ) |
8 |
|
efadd |
|- ( ( ( log_G ` A ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) |
9 |
3 7 8
|
syl2anc |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) |
10 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
11 |
4 6 10
|
syl2anc |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log ` A ) ) = A ) |
12 |
11
|
oveq2d |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. A ) ) |
13 |
2 9 12
|
3eqtrd |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( ( exp ` ( log_G ` A ) ) x. A ) ) |
14 |
|
1nn0 |
|- 1 e. NN0 |
15 |
14
|
a1i |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> 1 e. NN0 ) |
16 |
5 15
|
dmgmaddnn0 |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) ) |
17 |
|
eflgam |
|- ( ( A + 1 ) e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( _G ` ( A + 1 ) ) ) |
18 |
16 17
|
syl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` ( A + 1 ) ) ) = ( _G ` ( A + 1 ) ) ) |
19 |
|
eflgam |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
20 |
19
|
oveq1d |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( ( exp ` ( log_G ` A ) ) x. A ) = ( ( _G ` A ) x. A ) ) |
21 |
13 18 20
|
3eqtr3d |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` ( A + 1 ) ) = ( ( _G ` A ) x. A ) ) |