| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 2 |  | id |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 | 1 2 | lgamcvg2 |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( log_G ` ( A + 1 ) ) ) | 
						
							| 4 | 1 2 | lgamcvg |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 5 |  | climuni |  |-  ( ( seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( log_G ` ( A + 1 ) ) /\ seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) |