Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
2 |
|
id |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
3 |
1 2
|
lgamcvg2 |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( log_G ` ( A + 1 ) ) ) |
4 |
1 2
|
lgamcvg |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) |
5 |
|
climuni |
|- ( ( seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( log_G ` ( A + 1 ) ) /\ seq 1 ( + , ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` ( A + 1 ) ) = ( ( log_G ` A ) + ( log ` A ) ) ) |