| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gamcvg2.f |  |-  F = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) | 
						
							| 2 |  | gamcvg2.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | gamcvg2.g |  |-  G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 4 |  | addcl |  |-  ( ( n e. CC /\ x e. CC ) -> ( n + x ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ ( n e. CC /\ x e. CC ) ) -> ( n + x ) e. CC ) | 
						
							| 6 |  | simpll |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ph ) | 
						
							| 7 |  | elfznn |  |-  ( n e. ( 1 ... k ) -> n e. NN ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) | 
						
							| 9 |  | oveq1 |  |-  ( m = n -> ( m + 1 ) = ( n + 1 ) ) | 
						
							| 10 |  | id |  |-  ( m = n -> m = n ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( m = n -> ( ( m + 1 ) / m ) = ( ( n + 1 ) / n ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( m = n -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( ( n + 1 ) / n ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( m = n -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) = ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) | 
						
							| 14 |  | oveq2 |  |-  ( m = n -> ( A / m ) = ( A / n ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( m = n -> ( ( A / m ) + 1 ) = ( ( A / n ) + 1 ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( m = n -> ( log ` ( ( A / m ) + 1 ) ) = ( log ` ( ( A / n ) + 1 ) ) ) | 
						
							| 17 | 13 16 | oveq12d |  |-  ( m = n -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) = ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) | 
						
							| 18 |  | ovex |  |-  ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) e. _V | 
						
							| 19 | 17 3 18 | fvmpt |  |-  ( n e. NN -> ( G ` n ) = ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) = ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) | 
						
							| 21 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 22 | 21 | eldifad |  |-  ( ( ph /\ n e. NN ) -> A e. CC ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 24 | 23 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 25 | 24 | nnrpd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. RR+ ) | 
						
							| 26 | 23 | nnrpd |  |-  ( ( ph /\ n e. NN ) -> n e. RR+ ) | 
						
							| 27 | 25 26 | rpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( ( n + 1 ) / n ) e. RR+ ) | 
						
							| 28 | 27 | relogcld |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( n + 1 ) / n ) ) e. CC ) | 
						
							| 30 | 22 29 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( A x. ( log ` ( ( n + 1 ) / n ) ) ) e. CC ) | 
						
							| 31 | 23 | nncnd |  |-  ( ( ph /\ n e. NN ) -> n e. CC ) | 
						
							| 32 | 23 | nnne0d |  |-  ( ( ph /\ n e. NN ) -> n =/= 0 ) | 
						
							| 33 | 22 31 32 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( A / n ) e. CC ) | 
						
							| 34 |  | 1cnd |  |-  ( ( ph /\ n e. NN ) -> 1 e. CC ) | 
						
							| 35 | 33 34 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( ( A / n ) + 1 ) e. CC ) | 
						
							| 36 | 21 23 | dmgmdivn0 |  |-  ( ( ph /\ n e. NN ) -> ( ( A / n ) + 1 ) =/= 0 ) | 
						
							| 37 | 35 36 | logcld |  |-  ( ( ph /\ n e. NN ) -> ( log ` ( ( A / n ) + 1 ) ) e. CC ) | 
						
							| 38 | 30 37 | subcld |  |-  ( ( ph /\ n e. NN ) -> ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) e. CC ) | 
						
							| 39 | 20 38 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. CC ) | 
						
							| 40 | 6 8 39 | syl2anc |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( G ` n ) e. CC ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 42 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 43 | 41 42 | eleqtrdi |  |-  ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 44 |  | efadd |  |-  ( ( n e. CC /\ x e. CC ) -> ( exp ` ( n + x ) ) = ( ( exp ` n ) x. ( exp ` x ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ ( n e. CC /\ x e. CC ) ) -> ( exp ` ( n + x ) ) = ( ( exp ` n ) x. ( exp ` x ) ) ) | 
						
							| 46 |  | efsub |  |-  ( ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) e. CC /\ ( log ` ( ( A / n ) + 1 ) ) e. CC ) -> ( exp ` ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) / ( exp ` ( log ` ( ( A / n ) + 1 ) ) ) ) ) | 
						
							| 47 | 30 37 46 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) = ( ( exp ` ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) / ( exp ` ( log ` ( ( A / n ) + 1 ) ) ) ) ) | 
						
							| 48 | 31 34 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. CC ) | 
						
							| 49 | 48 31 32 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( ( n + 1 ) / n ) e. CC ) | 
						
							| 50 | 24 | nnne0d |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) =/= 0 ) | 
						
							| 51 | 48 31 50 32 | divne0d |  |-  ( ( ph /\ n e. NN ) -> ( ( n + 1 ) / n ) =/= 0 ) | 
						
							| 52 | 49 51 22 | cxpefd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( n + 1 ) / n ) ^c A ) = ( exp ` ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) ) | 
						
							| 53 | 52 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) = ( ( ( n + 1 ) / n ) ^c A ) ) | 
						
							| 54 |  | eflog |  |-  ( ( ( ( A / n ) + 1 ) e. CC /\ ( ( A / n ) + 1 ) =/= 0 ) -> ( exp ` ( log ` ( ( A / n ) + 1 ) ) ) = ( ( A / n ) + 1 ) ) | 
						
							| 55 | 35 36 54 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( log ` ( ( A / n ) + 1 ) ) ) = ( ( A / n ) + 1 ) ) | 
						
							| 56 | 53 55 | oveq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( exp ` ( A x. ( log ` ( ( n + 1 ) / n ) ) ) ) / ( exp ` ( log ` ( ( A / n ) + 1 ) ) ) ) = ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) ) | 
						
							| 57 | 47 56 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) = ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) ) | 
						
							| 58 | 20 | fveq2d |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( G ` n ) ) = ( exp ` ( ( A x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( A / n ) + 1 ) ) ) ) ) | 
						
							| 59 | 11 | oveq1d |  |-  ( m = n -> ( ( ( m + 1 ) / m ) ^c A ) = ( ( ( n + 1 ) / n ) ^c A ) ) | 
						
							| 60 | 59 15 | oveq12d |  |-  ( m = n -> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) = ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) ) | 
						
							| 61 |  | ovex |  |-  ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) e. _V | 
						
							| 62 | 60 1 61 | fvmpt |  |-  ( n e. NN -> ( F ` n ) = ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( ( n + 1 ) / n ) ^c A ) / ( ( A / n ) + 1 ) ) ) | 
						
							| 64 | 57 58 63 | 3eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( exp ` ( G ` n ) ) = ( F ` n ) ) | 
						
							| 65 | 6 8 64 | syl2anc |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( exp ` ( G ` n ) ) = ( F ` n ) ) | 
						
							| 66 | 5 40 43 45 65 | seqhomo |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( seq 1 ( + , G ) ` k ) ) = ( seq 1 ( x. , F ) ` k ) ) | 
						
							| 67 | 66 | mpteq2dva |  |-  ( ph -> ( k e. NN |-> ( exp ` ( seq 1 ( + , G ) ` k ) ) ) = ( k e. NN |-> ( seq 1 ( x. , F ) ` k ) ) ) | 
						
							| 68 |  | eff |  |-  exp : CC --> CC | 
						
							| 69 | 68 | a1i |  |-  ( ph -> exp : CC --> CC ) | 
						
							| 70 |  | 1z |  |-  1 e. ZZ | 
						
							| 71 | 70 | a1i |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 72 | 42 71 39 | serf |  |-  ( ph -> seq 1 ( + , G ) : NN --> CC ) | 
						
							| 73 |  | fcompt |  |-  ( ( exp : CC --> CC /\ seq 1 ( + , G ) : NN --> CC ) -> ( exp o. seq 1 ( + , G ) ) = ( k e. NN |-> ( exp ` ( seq 1 ( + , G ) ` k ) ) ) ) | 
						
							| 74 | 69 72 73 | syl2anc |  |-  ( ph -> ( exp o. seq 1 ( + , G ) ) = ( k e. NN |-> ( exp ` ( seq 1 ( + , G ) ` k ) ) ) ) | 
						
							| 75 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( x. , F ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 76 | 70 75 | mp1i |  |-  ( ph -> seq 1 ( x. , F ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 77 | 42 | fneq2i |  |-  ( seq 1 ( x. , F ) Fn NN <-> seq 1 ( x. , F ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 78 | 76 77 | sylibr |  |-  ( ph -> seq 1 ( x. , F ) Fn NN ) | 
						
							| 79 |  | dffn5 |  |-  ( seq 1 ( x. , F ) Fn NN <-> seq 1 ( x. , F ) = ( k e. NN |-> ( seq 1 ( x. , F ) ` k ) ) ) | 
						
							| 80 | 78 79 | sylib |  |-  ( ph -> seq 1 ( x. , F ) = ( k e. NN |-> ( seq 1 ( x. , F ) ` k ) ) ) | 
						
							| 81 | 67 74 80 | 3eqtr4d |  |-  ( ph -> ( exp o. seq 1 ( + , G ) ) = seq 1 ( x. , F ) ) |