Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gam1 | ⊢ ( Γ ‘ 1 ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lgam1 | ⊢ ( log Γ ‘ 1 ) = 0 | |
| 2 | 1 | fveq2i | ⊢ ( exp ‘ ( log Γ ‘ 1 ) ) = ( exp ‘ 0 ) | 
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | 1nn | ⊢ 1 ∈ ℕ | |
| 5 | eldifn | ⊢ ( 1 ∈ ( ℤ ∖ ℕ ) → ¬ 1 ∈ ℕ ) | |
| 6 | 4 5 | mt2 | ⊢ ¬ 1 ∈ ( ℤ ∖ ℕ ) | 
| 7 | eldif | ⊢ ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ ( ℤ ∖ ℕ ) ) ) | |
| 8 | 3 6 7 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) | 
| 9 | eflgam | ⊢ ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 1 ) ) = ( Γ ‘ 1 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( exp ‘ ( log Γ ‘ 1 ) ) = ( Γ ‘ 1 ) | 
| 11 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 12 | 2 10 11 | 3eqtr3i | ⊢ ( Γ ‘ 1 ) = 1 |