Metamath Proof Explorer


Theorem gam1

Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion gam1 ( Γ ‘ 1 ) = 1

Proof

Step Hyp Ref Expression
1 lgam1 ( log Γ ‘ 1 ) = 0
2 1 fveq2i ( exp ‘ ( log Γ ‘ 1 ) ) = ( exp ‘ 0 )
3 ax-1cn 1 ∈ ℂ
4 1nn 1 ∈ ℕ
5 eldifn ( 1 ∈ ( ℤ ∖ ℕ ) → ¬ 1 ∈ ℕ )
6 4 5 mt2 ¬ 1 ∈ ( ℤ ∖ ℕ )
7 eldif ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ ( ℤ ∖ ℕ ) ) )
8 3 6 7 mpbir2an 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) )
9 eflgam ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 1 ) ) = ( Γ ‘ 1 ) )
10 8 9 ax-mp ( exp ‘ ( log Γ ‘ 1 ) ) = ( Γ ‘ 1 )
11 ef0 ( exp ‘ 0 ) = 1
12 2 10 11 3eqtr3i ( Γ ‘ 1 ) = 1