| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 2 | 1 | nnrpd | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 3 |  | nnrp | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ+ ) | 
						
							| 4 | 2 3 | rpdivcld | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 5 | 4 | relogcld | ⊢ ( 𝑚  ∈  ℕ  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝑚  ∈  ℕ  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 7 | 6 | mullidd | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 9 |  | nnne0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ≠  0 ) | 
						
							| 10 | 8 9 | dividd | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  /  𝑚 )  =  1 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  /  𝑚 )  +  ( 1  /  𝑚 ) )  =  ( 1  +  ( 1  /  𝑚 ) ) ) | 
						
							| 12 |  | 1cnd | ⊢ ( 𝑚  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 13 | 8 12 8 9 | divdird | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑚  /  𝑚 )  +  ( 1  /  𝑚 ) ) ) | 
						
							| 14 | 8 9 | reccld | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  /  𝑚 )  ∈  ℂ ) | 
						
							| 15 | 14 12 | addcomd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 1  /  𝑚 )  +  1 )  =  ( 1  +  ( 1  /  𝑚 ) ) ) | 
						
							| 16 | 11 13 15 | 3eqtr4rd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 1  /  𝑚 )  +  1 )  =  ( ( 𝑚  +  1 )  /  𝑚 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑚  ∈  ℕ  →  ( log ‘ ( ( 1  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) ) | 
						
							| 18 | 7 17 | oveq12d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 1  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 1  /  𝑚 )  +  1 ) ) )  =  ( ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  −  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) ) ) | 
						
							| 19 | 6 | subidd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  −  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  0 ) | 
						
							| 20 | 18 19 | eqtrd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 1  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 1  /  𝑚 )  +  1 ) ) )  =  0 ) | 
						
							| 21 | 20 | mpteq2ia | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 1  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 1  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  0 ) | 
						
							| 22 |  | fconstmpt | ⊢ ( ℕ  ×  { 0 } )  =  ( 𝑚  ∈  ℕ  ↦  0 ) | 
						
							| 23 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 24 | 23 | xpeq1i | ⊢ ( ℕ  ×  { 0 } )  =  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) | 
						
							| 25 | 21 22 24 | 3eqtr2ri | ⊢ ( ( ℤ≥ ‘ 1 )  ×  { 0 } )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 1  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 1  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 26 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 27 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 28 |  | eldifn | ⊢ ( 1  ∈  ( ℤ  ∖  ℕ )  →  ¬  1  ∈  ℕ ) | 
						
							| 29 | 27 28 | mt2 | ⊢ ¬  1  ∈  ( ℤ  ∖  ℕ ) | 
						
							| 30 |  | eldif | ⊢ ( 1  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 1  ∈  ℂ  ∧  ¬  1  ∈  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 31 | 26 29 30 | mpbir2an | ⊢ 1  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( ⊤  →  1  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 33 | 25 32 | lgamcvg | ⊢ ( ⊤  →  seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  ( ( log Γ ‘ 1 )  +  ( log ‘ 1 ) ) ) | 
						
							| 34 | 33 | mptru | ⊢ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  ( ( log Γ ‘ 1 )  +  ( log ‘ 1 ) ) | 
						
							| 35 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 36 | 35 | oveq2i | ⊢ ( ( log Γ ‘ 1 )  +  ( log ‘ 1 ) )  =  ( ( log Γ ‘ 1 )  +  0 ) | 
						
							| 37 |  | lgamcl | ⊢ ( 1  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 1 )  ∈  ℂ ) | 
						
							| 38 | 31 37 | ax-mp | ⊢ ( log Γ ‘ 1 )  ∈  ℂ | 
						
							| 39 | 38 | addridi | ⊢ ( ( log Γ ‘ 1 )  +  0 )  =  ( log Γ ‘ 1 ) | 
						
							| 40 | 36 39 | eqtri | ⊢ ( ( log Γ ‘ 1 )  +  ( log ‘ 1 ) )  =  ( log Γ ‘ 1 ) | 
						
							| 41 | 34 40 | breqtri | ⊢ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  ( log Γ ‘ 1 ) | 
						
							| 42 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 43 |  | serclim0 | ⊢ ( 1  ∈  ℤ  →  seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0 ) | 
						
							| 44 | 42 43 | ax-mp | ⊢ seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0 | 
						
							| 45 |  | climuni | ⊢ ( ( seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  ( log Γ ‘ 1 )  ∧  seq 1 (  +  ,  ( ( ℤ≥ ‘ 1 )  ×  { 0 } ) )  ⇝  0 )  →  ( log Γ ‘ 1 )  =  0 ) | 
						
							| 46 | 41 44 45 | mp2an | ⊢ ( log Γ ‘ 1 )  =  0 |