Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
2 |
1
|
nnrpd |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℝ+ ) |
3 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
4 |
2 3
|
rpdivcld |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
5 |
4
|
relogcld |
⊢ ( 𝑚 ∈ ℕ → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝑚 ∈ ℕ → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℂ ) |
7 |
6
|
mulid2d |
⊢ ( 𝑚 ∈ ℕ → ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) |
8 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
9 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
10 |
8 9
|
dividd |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 / 𝑚 ) = 1 ) |
11 |
10
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
12 |
|
1cnd |
⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℂ ) |
13 |
8 12 8 9
|
divdird |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) ) |
14 |
8 9
|
reccld |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℂ ) |
15 |
14 12
|
addcomd |
⊢ ( 𝑚 ∈ ℕ → ( ( 1 / 𝑚 ) + 1 ) = ( 1 + ( 1 / 𝑚 ) ) ) |
16 |
11 13 15
|
3eqtr4rd |
⊢ ( 𝑚 ∈ ℕ → ( ( 1 / 𝑚 ) + 1 ) = ( ( 𝑚 + 1 ) / 𝑚 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) |
18 |
7 17
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ → ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) = ( ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) − ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ) |
19 |
6
|
subidd |
⊢ ( 𝑚 ∈ ℕ → ( ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) − ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = 0 ) |
20 |
18 19
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) = 0 ) |
21 |
20
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
22 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
23
|
xpeq1i |
⊢ ( ℕ × { 0 } ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
25 |
21 22 24
|
3eqtr2ri |
⊢ ( ( ℤ≥ ‘ 1 ) × { 0 } ) = ( 𝑚 ∈ ℕ ↦ ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) ) |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
|
1nn |
⊢ 1 ∈ ℕ |
28 |
|
eldifn |
⊢ ( 1 ∈ ( ℤ ∖ ℕ ) → ¬ 1 ∈ ℕ ) |
29 |
27 28
|
mt2 |
⊢ ¬ 1 ∈ ( ℤ ∖ ℕ ) |
30 |
|
eldif |
⊢ ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ ( ℤ ∖ ℕ ) ) ) |
31 |
26 29 30
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) |
32 |
31
|
a1i |
⊢ ( ⊤ → 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
33 |
25 32
|
lgamcvg |
⊢ ( ⊤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) ) |
34 |
33
|
mptru |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) |
35 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
36 |
35
|
oveq2i |
⊢ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) = ( ( log Γ ‘ 1 ) + 0 ) |
37 |
|
lgamcl |
⊢ ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 1 ) ∈ ℂ ) |
38 |
31 37
|
ax-mp |
⊢ ( log Γ ‘ 1 ) ∈ ℂ |
39 |
38
|
addid1i |
⊢ ( ( log Γ ‘ 1 ) + 0 ) = ( log Γ ‘ 1 ) |
40 |
36 39
|
eqtri |
⊢ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) = ( log Γ ‘ 1 ) |
41 |
34 40
|
breqtri |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ ( log Γ ‘ 1 ) |
42 |
|
1z |
⊢ 1 ∈ ℤ |
43 |
|
serclim0 |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) |
44 |
42 43
|
ax-mp |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 |
45 |
|
climuni |
⊢ ( ( seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ ( log Γ ‘ 1 ) ∧ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) → ( log Γ ‘ 1 ) = 0 ) |
46 |
41 44 45
|
mp2an |
⊢ ( log Γ ‘ 1 ) = 0 |