Metamath Proof Explorer


Theorem lgam1

Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion lgam1 ( log Γ ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 peano2nn ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ )
2 1 nnrpd ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℝ+ )
3 nnrp ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ )
4 2 3 rpdivcld ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ )
5 4 relogcld ( 𝑚 ∈ ℕ → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ )
6 5 recnd ( 𝑚 ∈ ℕ → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℂ )
7 6 mulid2d ( 𝑚 ∈ ℕ → ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) )
8 nncn ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ )
9 nnne0 ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 )
10 8 9 dividd ( 𝑚 ∈ ℕ → ( 𝑚 / 𝑚 ) = 1 )
11 10 oveq1d ( 𝑚 ∈ ℕ → ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) = ( 1 + ( 1 / 𝑚 ) ) )
12 1cnd ( 𝑚 ∈ ℕ → 1 ∈ ℂ )
13 8 12 8 9 divdird ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) )
14 8 9 reccld ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℂ )
15 14 12 addcomd ( 𝑚 ∈ ℕ → ( ( 1 / 𝑚 ) + 1 ) = ( 1 + ( 1 / 𝑚 ) ) )
16 11 13 15 3eqtr4rd ( 𝑚 ∈ ℕ → ( ( 1 / 𝑚 ) + 1 ) = ( ( 𝑚 + 1 ) / 𝑚 ) )
17 16 fveq2d ( 𝑚 ∈ ℕ → ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) )
18 7 17 oveq12d ( 𝑚 ∈ ℕ → ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) = ( ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) − ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) )
19 6 subidd ( 𝑚 ∈ ℕ → ( ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) − ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = 0 )
20 18 19 eqtrd ( 𝑚 ∈ ℕ → ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) = 0 )
21 20 mpteq2ia ( 𝑚 ∈ ℕ ↦ ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 )
22 fconstmpt ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 )
23 nnuz ℕ = ( ℤ ‘ 1 )
24 23 xpeq1i ( ℕ × { 0 } ) = ( ( ℤ ‘ 1 ) × { 0 } )
25 21 22 24 3eqtr2ri ( ( ℤ ‘ 1 ) × { 0 } ) = ( 𝑚 ∈ ℕ ↦ ( ( 1 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 1 / 𝑚 ) + 1 ) ) ) )
26 ax-1cn 1 ∈ ℂ
27 1nn 1 ∈ ℕ
28 eldifn ( 1 ∈ ( ℤ ∖ ℕ ) → ¬ 1 ∈ ℕ )
29 27 28 mt2 ¬ 1 ∈ ( ℤ ∖ ℕ )
30 eldif ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ ( ℤ ∖ ℕ ) ) )
31 26 29 30 mpbir2an 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) )
32 31 a1i ( ⊤ → 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
33 25 32 lgamcvg ( ⊤ → seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) )
34 33 mptru seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) )
35 log1 ( log ‘ 1 ) = 0
36 35 oveq2i ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) = ( ( log Γ ‘ 1 ) + 0 )
37 lgamcl ( 1 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 1 ) ∈ ℂ )
38 31 37 ax-mp ( log Γ ‘ 1 ) ∈ ℂ
39 38 addid1i ( ( log Γ ‘ 1 ) + 0 ) = ( log Γ ‘ 1 )
40 36 39 eqtri ( ( log Γ ‘ 1 ) + ( log ‘ 1 ) ) = ( log Γ ‘ 1 )
41 34 40 breqtri seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ ( log Γ ‘ 1 )
42 1z 1 ∈ ℤ
43 serclim0 ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ 0 )
44 42 43 ax-mp seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ 0
45 climuni ( ( seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ ( log Γ ‘ 1 ) ∧ seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) → ( log Γ ‘ 1 ) = 0 )
46 41 44 45 mp2an ( log Γ ‘ 1 ) = 0