| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn |  | 
						
							| 2 | 1 | nnrpd |  | 
						
							| 3 |  | nnrp |  | 
						
							| 4 | 2 3 | rpdivcld |  | 
						
							| 5 | 4 | relogcld |  | 
						
							| 6 | 5 | recnd |  | 
						
							| 7 | 6 | mullidd |  | 
						
							| 8 |  | nncn |  | 
						
							| 9 |  | nnne0 |  | 
						
							| 10 | 8 9 | dividd |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 |  | 1cnd |  | 
						
							| 13 | 8 12 8 9 | divdird |  | 
						
							| 14 | 8 9 | reccld |  | 
						
							| 15 | 14 12 | addcomd |  | 
						
							| 16 | 11 13 15 | 3eqtr4rd |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 | 7 17 | oveq12d |  | 
						
							| 19 | 6 | subidd |  | 
						
							| 20 | 18 19 | eqtrd |  | 
						
							| 21 | 20 | mpteq2ia |  | 
						
							| 22 |  | fconstmpt |  | 
						
							| 23 |  | nnuz |  | 
						
							| 24 | 23 | xpeq1i |  | 
						
							| 25 | 21 22 24 | 3eqtr2ri |  | 
						
							| 26 |  | ax-1cn |  | 
						
							| 27 |  | 1nn |  | 
						
							| 28 |  | eldifn |  | 
						
							| 29 | 27 28 | mt2 |  | 
						
							| 30 |  | eldif |  | 
						
							| 31 | 26 29 30 | mpbir2an |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 25 32 | lgamcvg |  | 
						
							| 34 | 33 | mptru |  | 
						
							| 35 |  | log1 |  | 
						
							| 36 | 35 | oveq2i |  | 
						
							| 37 |  | lgamcl |  | 
						
							| 38 | 31 37 | ax-mp |  | 
						
							| 39 | 38 | addridi |  | 
						
							| 40 | 36 39 | eqtri |  | 
						
							| 41 | 34 40 | breqtri |  | 
						
							| 42 |  | 1z |  | 
						
							| 43 |  | serclim0 |  | 
						
							| 44 | 42 43 | ax-mp |  | 
						
							| 45 |  | climuni |  | 
						
							| 46 | 41 44 45 | mp2an |  |