Metamath Proof Explorer


Theorem lgam1

Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion lgam1 log Γ 1 = 0

Proof

Step Hyp Ref Expression
1 peano2nn m m + 1
2 1 nnrpd m m + 1 +
3 nnrp m m +
4 2 3 rpdivcld m m + 1 m +
5 4 relogcld m log m + 1 m
6 5 recnd m log m + 1 m
7 6 mulid2d m 1 log m + 1 m = log m + 1 m
8 nncn m m
9 nnne0 m m 0
10 8 9 dividd m m m = 1
11 10 oveq1d m m m + 1 m = 1 + 1 m
12 1cnd m 1
13 8 12 8 9 divdird m m + 1 m = m m + 1 m
14 8 9 reccld m 1 m
15 14 12 addcomd m 1 m + 1 = 1 + 1 m
16 11 13 15 3eqtr4rd m 1 m + 1 = m + 1 m
17 16 fveq2d m log 1 m + 1 = log m + 1 m
18 7 17 oveq12d m 1 log m + 1 m log 1 m + 1 = log m + 1 m log m + 1 m
19 6 subidd m log m + 1 m log m + 1 m = 0
20 18 19 eqtrd m 1 log m + 1 m log 1 m + 1 = 0
21 20 mpteq2ia m 1 log m + 1 m log 1 m + 1 = m 0
22 fconstmpt × 0 = m 0
23 nnuz = 1
24 23 xpeq1i × 0 = 1 × 0
25 21 22 24 3eqtr2ri 1 × 0 = m 1 log m + 1 m log 1 m + 1
26 ax-1cn 1
27 1nn 1
28 eldifn 1 ¬ 1
29 27 28 mt2 ¬ 1
30 eldif 1 1 ¬ 1
31 26 29 30 mpbir2an 1
32 31 a1i 1
33 25 32 lgamcvg seq 1 + 1 × 0 log Γ 1 + log 1
34 33 mptru seq 1 + 1 × 0 log Γ 1 + log 1
35 log1 log 1 = 0
36 35 oveq2i log Γ 1 + log 1 = log Γ 1 + 0
37 lgamcl 1 log Γ 1
38 31 37 ax-mp log Γ 1
39 38 addid1i log Γ 1 + 0 = log Γ 1
40 36 39 eqtri log Γ 1 + log 1 = log Γ 1
41 34 40 breqtri seq 1 + 1 × 0 log Γ 1
42 1z 1
43 serclim0 1 seq 1 + 1 × 0 0
44 42 43 ax-mp seq 1 + 1 × 0 0
45 climuni seq 1 + 1 × 0 log Γ 1 seq 1 + 1 × 0 0 log Γ 1 = 0
46 41 44 45 mp2an log Γ 1 = 0