| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn |
|
| 2 |
1
|
nnrpd |
|
| 3 |
|
nnrp |
|
| 4 |
2 3
|
rpdivcld |
|
| 5 |
4
|
relogcld |
|
| 6 |
5
|
recnd |
|
| 7 |
6
|
mullidd |
|
| 8 |
|
nncn |
|
| 9 |
|
nnne0 |
|
| 10 |
8 9
|
dividd |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
1cnd |
|
| 13 |
8 12 8 9
|
divdird |
|
| 14 |
8 9
|
reccld |
|
| 15 |
14 12
|
addcomd |
|
| 16 |
11 13 15
|
3eqtr4rd |
|
| 17 |
16
|
fveq2d |
|
| 18 |
7 17
|
oveq12d |
|
| 19 |
6
|
subidd |
|
| 20 |
18 19
|
eqtrd |
|
| 21 |
20
|
mpteq2ia |
|
| 22 |
|
fconstmpt |
|
| 23 |
|
nnuz |
|
| 24 |
23
|
xpeq1i |
|
| 25 |
21 22 24
|
3eqtr2ri |
|
| 26 |
|
ax-1cn |
|
| 27 |
|
1nn |
|
| 28 |
|
eldifn |
|
| 29 |
27 28
|
mt2 |
|
| 30 |
|
eldif |
|
| 31 |
26 29 30
|
mpbir2an |
|
| 32 |
31
|
a1i |
|
| 33 |
25 32
|
lgamcvg |
|
| 34 |
33
|
mptru |
|
| 35 |
|
log1 |
|
| 36 |
35
|
oveq2i |
|
| 37 |
|
lgamcl |
|
| 38 |
31 37
|
ax-mp |
|
| 39 |
38
|
addridi |
|
| 40 |
36 39
|
eqtri |
|
| 41 |
34 40
|
breqtri |
|
| 42 |
|
1z |
|
| 43 |
|
serclim0 |
|
| 44 |
42 43
|
ax-mp |
|
| 45 |
|
climuni |
|
| 46 |
41 44 45
|
mp2an |
|