Metamath Proof Explorer


Theorem rpgamcl

Description: The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion rpgamcl ( 𝐴 ∈ ℝ+ → ( Γ ‘ 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpdmgm ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
2 eflgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
4 relgamcl ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℝ )
5 4 rpefcld ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log Γ ‘ 𝐴 ) ) ∈ ℝ+ )
6 3 5 eqeltrrd ( 𝐴 ∈ ℝ+ → ( Γ ‘ 𝐴 ) ∈ ℝ+ )