Description: The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpgamcl | ⊢ ( 𝐴 ∈ ℝ+ → ( Γ ‘ 𝐴 ) ∈ ℝ+ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpdmgm | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) | |
| 2 | eflgam | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) | 
| 4 | relgamcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log Γ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | rpefcld | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log Γ ‘ 𝐴 ) ) ∈ ℝ+ ) | 
| 6 | 3 5 | eqeltrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( Γ ‘ 𝐴 ) ∈ ℝ+ ) |