| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. CC ) | 
						
							| 3 |  | eldifn |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> -. A e. ( ZZ \ NN ) ) | 
						
							| 4 | 2 3 | eldifd |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 5 |  | gamcl |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) | 
						
							| 7 | 4 | dmgmn0 |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> A =/= 0 ) | 
						
							| 8 | 6 2 7 | divcan4d |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( ( _G ` A ) x. A ) / A ) = ( _G ` A ) ) | 
						
							| 9 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 10 |  | 1zzd |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> 1 e. ZZ ) | 
						
							| 11 |  | eqid |  |-  ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) | 
						
							| 12 | 11 4 | gamcvg2 |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) ~~> ( ( _G ` A ) x. A ) ) | 
						
							| 13 |  | simpr |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> m e. NN ) | 
						
							| 14 | 13 | peano2nnd |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 15 | 14 | nnrpd |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( m + 1 ) e. RR+ ) | 
						
							| 16 | 13 | nnrpd |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> m e. RR+ ) | 
						
							| 17 | 15 16 | rpdivcld |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) | 
						
							| 18 | 17 | rpred |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR ) | 
						
							| 19 | 17 | rpge0d |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> 0 <_ ( ( m + 1 ) / m ) ) | 
						
							| 20 | 1 | adantr |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> A e. RR ) | 
						
							| 21 | 18 19 20 | recxpcld |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( ( m + 1 ) / m ) ^c A ) e. RR ) | 
						
							| 22 | 20 13 | nndivred |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( A / m ) e. RR ) | 
						
							| 23 |  | 1red |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> 1 e. RR ) | 
						
							| 24 | 22 23 | readdcld |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( A / m ) + 1 ) e. RR ) | 
						
							| 25 | 4 | adantr |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 26 | 25 13 | dmgmdivn0 |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( A / m ) + 1 ) =/= 0 ) | 
						
							| 27 | 21 24 26 | redivcld |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) e. RR ) | 
						
							| 28 | 27 | fmpttd |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) : NN --> RR ) | 
						
							| 29 | 28 | ffvelcdmda |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ n e. NN ) -> ( ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ` n ) e. RR ) | 
						
							| 30 |  | remulcl |  |-  ( ( n e. RR /\ x e. RR ) -> ( n x. x ) e. RR ) | 
						
							| 31 | 30 | adantl |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ ( n e. RR /\ x e. RR ) ) -> ( n x. x ) e. RR ) | 
						
							| 32 | 9 10 29 31 | seqf |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) : NN --> RR ) | 
						
							| 33 | 32 | ffvelcdmda |  |-  ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ n e. NN ) -> ( seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) ` n ) e. RR ) | 
						
							| 34 | 9 10 12 33 | climrecl |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( _G ` A ) x. A ) e. RR ) | 
						
							| 35 | 34 1 7 | redivcld |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( ( _G ` A ) x. A ) / A ) e. RR ) | 
						
							| 36 | 8 35 | eqeltrrd |  |-  ( A e. ( RR \ ( ZZ \ NN ) ) -> ( _G ` A ) e. RR ) |