Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. CC ) |
3 |
|
eldifn |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> -. A e. ( ZZ \ NN ) ) |
4 |
2 3
|
eldifd |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
5 |
|
gamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) |
6 |
4 5
|
syl |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) |
7 |
4
|
dmgmn0 |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> A =/= 0 ) |
8 |
6 2 7
|
divcan4d |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( ( _G ` A ) x. A ) / A ) = ( _G ` A ) ) |
9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
10 |
|
1zzd |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> 1 e. ZZ ) |
11 |
|
eqid |
|- ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) = ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) |
12 |
11 4
|
gamcvg2 |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) ~~> ( ( _G ` A ) x. A ) ) |
13 |
|
simpr |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> m e. NN ) |
14 |
13
|
peano2nnd |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( m + 1 ) e. NN ) |
15 |
14
|
nnrpd |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( m + 1 ) e. RR+ ) |
16 |
13
|
nnrpd |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> m e. RR+ ) |
17 |
15 16
|
rpdivcld |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) |
18 |
17
|
rpred |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR ) |
19 |
17
|
rpge0d |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> 0 <_ ( ( m + 1 ) / m ) ) |
20 |
1
|
adantr |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> A e. RR ) |
21 |
18 19 20
|
recxpcld |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( ( m + 1 ) / m ) ^c A ) e. RR ) |
22 |
20 13
|
nndivred |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( A / m ) e. RR ) |
23 |
|
1red |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> 1 e. RR ) |
24 |
22 23
|
readdcld |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( A / m ) + 1 ) e. RR ) |
25 |
4
|
adantr |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
26 |
25 13
|
dmgmdivn0 |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( A / m ) + 1 ) =/= 0 ) |
27 |
21 24 26
|
redivcld |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ m e. NN ) -> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) e. RR ) |
28 |
27
|
fmpttd |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) : NN --> RR ) |
29 |
28
|
ffvelrnda |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ n e. NN ) -> ( ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ` n ) e. RR ) |
30 |
|
remulcl |
|- ( ( n e. RR /\ x e. RR ) -> ( n x. x ) e. RR ) |
31 |
30
|
adantl |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ ( n e. RR /\ x e. RR ) ) -> ( n x. x ) e. RR ) |
32 |
9 10 29 31
|
seqf |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) : NN --> RR ) |
33 |
32
|
ffvelrnda |
|- ( ( A e. ( RR \ ( ZZ \ NN ) ) /\ n e. NN ) -> ( seq 1 ( x. , ( m e. NN |-> ( ( ( ( m + 1 ) / m ) ^c A ) / ( ( A / m ) + 1 ) ) ) ) ` n ) e. RR ) |
34 |
9 10 12 33
|
climrecl |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( _G ` A ) x. A ) e. RR ) |
35 |
34 1 7
|
redivcld |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( ( ( _G ` A ) x. A ) / A ) e. RR ) |
36 |
8 35
|
eqeltrrd |
|- ( A e. ( RR \ ( ZZ \ NN ) ) -> ( _G ` A ) e. RR ) |