| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamcvg.g |
|- G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) |
| 2 |
|
lgamcvg.a |
|- ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 4 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 5 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 6 |
5
|
a1i |
|- ( ph -> exp e. ( CC -cn-> CC ) ) |
| 7 |
2
|
eldifad |
|- ( ph -> A e. CC ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ m e. NN ) -> A e. CC ) |
| 9 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
| 10 |
9
|
peano2nnd |
|- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. NN ) |
| 11 |
10
|
nnrpd |
|- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. RR+ ) |
| 12 |
9
|
nnrpd |
|- ( ( ph /\ m e. NN ) -> m e. RR+ ) |
| 13 |
11 12
|
rpdivcld |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) |
| 14 |
13
|
relogcld |
|- ( ( ph /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( ph /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. CC ) |
| 16 |
8 15
|
mulcld |
|- ( ( ph /\ m e. NN ) -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) e. CC ) |
| 17 |
9
|
nncnd |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 18 |
9
|
nnne0d |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
| 19 |
8 17 18
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( A / m ) e. CC ) |
| 20 |
|
1cnd |
|- ( ( ph /\ m e. NN ) -> 1 e. CC ) |
| 21 |
19 20
|
addcld |
|- ( ( ph /\ m e. NN ) -> ( ( A / m ) + 1 ) e. CC ) |
| 22 |
2
|
adantr |
|- ( ( ph /\ m e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |
| 23 |
22 9
|
dmgmdivn0 |
|- ( ( ph /\ m e. NN ) -> ( ( A / m ) + 1 ) =/= 0 ) |
| 24 |
21 23
|
logcld |
|- ( ( ph /\ m e. NN ) -> ( log ` ( ( A / m ) + 1 ) ) e. CC ) |
| 25 |
16 24
|
subcld |
|- ( ( ph /\ m e. NN ) -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) e. CC ) |
| 26 |
25 1
|
fmptd |
|- ( ph -> G : NN --> CC ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. CC ) |
| 28 |
3 4 27
|
serf |
|- ( ph -> seq 1 ( + , G ) : NN --> CC ) |
| 29 |
1 2
|
lgamcvg |
|- ( ph -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) |
| 30 |
|
lgamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) |
| 31 |
2 30
|
syl |
|- ( ph -> ( log_G ` A ) e. CC ) |
| 32 |
2
|
dmgmn0 |
|- ( ph -> A =/= 0 ) |
| 33 |
7 32
|
logcld |
|- ( ph -> ( log ` A ) e. CC ) |
| 34 |
31 33
|
addcld |
|- ( ph -> ( ( log_G ` A ) + ( log ` A ) ) e. CC ) |
| 35 |
3 4 6 28 29 34
|
climcncf |
|- ( ph -> ( exp o. seq 1 ( + , G ) ) ~~> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) ) |
| 36 |
|
efadd |
|- ( ( ( log_G ` A ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) |
| 37 |
31 33 36
|
syl2anc |
|- ( ph -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) |
| 38 |
|
eflgam |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
| 39 |
2 38
|
syl |
|- ( ph -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) |
| 40 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
| 41 |
7 32 40
|
syl2anc |
|- ( ph -> ( exp ` ( log ` A ) ) = A ) |
| 42 |
39 41
|
oveq12d |
|- ( ph -> ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) = ( ( _G ` A ) x. A ) ) |
| 43 |
37 42
|
eqtrd |
|- ( ph -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( _G ` A ) x. A ) ) |
| 44 |
35 43
|
breqtrd |
|- ( ph -> ( exp o. seq 1 ( + , G ) ) ~~> ( ( _G ` A ) x. A ) ) |