| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamcvg.g |  |-  G = ( m e. NN |-> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) ) | 
						
							| 2 |  | lgamcvg.a |  |-  ( ph -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 3 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 4 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 5 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 6 | 5 | a1i |  |-  ( ph -> exp e. ( CC -cn-> CC ) ) | 
						
							| 7 | 2 | eldifad |  |-  ( ph -> A e. CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ m e. NN ) -> A e. CC ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ m e. NN ) -> m e. NN ) | 
						
							| 10 | 9 | peano2nnd |  |-  ( ( ph /\ m e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 11 | 10 | nnrpd |  |-  ( ( ph /\ m e. NN ) -> ( m + 1 ) e. RR+ ) | 
						
							| 12 | 9 | nnrpd |  |-  ( ( ph /\ m e. NN ) -> m e. RR+ ) | 
						
							| 13 | 11 12 | rpdivcld |  |-  ( ( ph /\ m e. NN ) -> ( ( m + 1 ) / m ) e. RR+ ) | 
						
							| 14 | 13 | relogcld |  |-  ( ( ph /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( ph /\ m e. NN ) -> ( log ` ( ( m + 1 ) / m ) ) e. CC ) | 
						
							| 16 | 8 15 | mulcld |  |-  ( ( ph /\ m e. NN ) -> ( A x. ( log ` ( ( m + 1 ) / m ) ) ) e. CC ) | 
						
							| 17 | 9 | nncnd |  |-  ( ( ph /\ m e. NN ) -> m e. CC ) | 
						
							| 18 | 9 | nnne0d |  |-  ( ( ph /\ m e. NN ) -> m =/= 0 ) | 
						
							| 19 | 8 17 18 | divcld |  |-  ( ( ph /\ m e. NN ) -> ( A / m ) e. CC ) | 
						
							| 20 |  | 1cnd |  |-  ( ( ph /\ m e. NN ) -> 1 e. CC ) | 
						
							| 21 | 19 20 | addcld |  |-  ( ( ph /\ m e. NN ) -> ( ( A / m ) + 1 ) e. CC ) | 
						
							| 22 | 2 | adantr |  |-  ( ( ph /\ m e. NN ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
						
							| 23 | 22 9 | dmgmdivn0 |  |-  ( ( ph /\ m e. NN ) -> ( ( A / m ) + 1 ) =/= 0 ) | 
						
							| 24 | 21 23 | logcld |  |-  ( ( ph /\ m e. NN ) -> ( log ` ( ( A / m ) + 1 ) ) e. CC ) | 
						
							| 25 | 16 24 | subcld |  |-  ( ( ph /\ m e. NN ) -> ( ( A x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( A / m ) + 1 ) ) ) e. CC ) | 
						
							| 26 | 25 1 | fmptd |  |-  ( ph -> G : NN --> CC ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. CC ) | 
						
							| 28 | 3 4 27 | serf |  |-  ( ph -> seq 1 ( + , G ) : NN --> CC ) | 
						
							| 29 | 1 2 | lgamcvg |  |-  ( ph -> seq 1 ( + , G ) ~~> ( ( log_G ` A ) + ( log ` A ) ) ) | 
						
							| 30 |  | lgamcl |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` A ) e. CC ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> ( log_G ` A ) e. CC ) | 
						
							| 32 | 2 | dmgmn0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 33 | 7 32 | logcld |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 34 | 31 33 | addcld |  |-  ( ph -> ( ( log_G ` A ) + ( log ` A ) ) e. CC ) | 
						
							| 35 | 3 4 6 28 29 34 | climcncf |  |-  ( ph -> ( exp o. seq 1 ( + , G ) ) ~~> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) ) | 
						
							| 36 |  | efadd |  |-  ( ( ( log_G ` A ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 37 | 31 33 36 | syl2anc |  |-  ( ph -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 38 |  | eflgam |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
						
							| 39 | 2 38 | syl |  |-  ( ph -> ( exp ` ( log_G ` A ) ) = ( _G ` A ) ) | 
						
							| 40 |  | eflog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 41 | 7 32 40 | syl2anc |  |-  ( ph -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 42 | 39 41 | oveq12d |  |-  ( ph -> ( ( exp ` ( log_G ` A ) ) x. ( exp ` ( log ` A ) ) ) = ( ( _G ` A ) x. A ) ) | 
						
							| 43 | 37 42 | eqtrd |  |-  ( ph -> ( exp ` ( ( log_G ` A ) + ( log ` A ) ) ) = ( ( _G ` A ) x. A ) ) | 
						
							| 44 | 35 43 | breqtrd |  |-  ( ph -> ( exp o. seq 1 ( + , G ) ) ~~> ( ( _G ` A ) x. A ) ) |