| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamcvg.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 2 |  | lgamcvg.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 4 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 5 |  | efcn | ⊢ exp  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  exp  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 7 | 2 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 10 | 9 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 11 | 10 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 12 | 9 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 13 | 11 12 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 14 | 13 | relogcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 16 | 8 15 | mulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 17 | 9 | nncnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 18 | 9 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ≠  0 ) | 
						
							| 19 | 8 17 18 | divcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐴  /  𝑚 )  ∈  ℂ ) | 
						
							| 20 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 21 | 19 20 | addcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  /  𝑚 )  +  1 )  ∈  ℂ ) | 
						
							| 22 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 23 | 22 9 | dmgmdivn0 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  /  𝑚 )  +  1 )  ≠  0 ) | 
						
							| 24 | 21 23 | logcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) )  ∈  ℂ ) | 
						
							| 25 | 16 24 | subcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 26 | 25 1 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ ℂ ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 28 | 3 4 27 | serf | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 ) : ℕ ⟶ ℂ ) | 
						
							| 29 | 1 2 | lgamcvg | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 30 |  | lgamcl | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 32 | 2 | dmgmn0 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 33 | 7 32 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 34 | 31 33 | addcld | ⊢ ( 𝜑  →  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 35 | 3 4 6 28 29 34 | climcncf | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  𝐺 ) )  ⇝  ( exp ‘ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 36 |  | efadd | ⊢ ( ( ( log Γ ‘ 𝐴 )  ∈  ℂ  ∧  ( log ‘ 𝐴 )  ∈  ℂ )  →  ( exp ‘ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log Γ ‘ 𝐴 ) )  ·  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 31 33 36 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log Γ ‘ 𝐴 ) )  ·  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 38 |  | eflgam | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 39 | 2 38 | syl | ⊢ ( 𝜑  →  ( exp ‘ ( log Γ ‘ 𝐴 ) )  =  ( Γ ‘ 𝐴 ) ) | 
						
							| 40 |  | eflog | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 41 | 7 32 40 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 42 | 39 41 | oveq12d | ⊢ ( 𝜑  →  ( ( exp ‘ ( log Γ ‘ 𝐴 ) )  ·  ( exp ‘ ( log ‘ 𝐴 ) ) )  =  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 43 | 37 42 | eqtrd | ⊢ ( 𝜑  →  ( exp ‘ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) )  =  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 44 | 35 43 | breqtrd | ⊢ ( 𝜑  →  ( exp  ∘  seq 1 (  +  ,  𝐺 ) )  ⇝  ( ( Γ ‘ 𝐴 )  ·  𝐴 ) ) |