Metamath Proof Explorer


Theorem gamcvg

Description: The pointwise exponential of the series G converges to _G ( A ) x. A . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
lgamcvg.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
Assertion gamcvg ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lgamcvg.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) )
2 lgamcvg.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
3 nnuz ℕ = ( ℤ ‘ 1 )
4 1zzd ( 𝜑 → 1 ∈ ℤ )
5 efcn exp ∈ ( ℂ –cn→ ℂ )
6 5 a1i ( 𝜑 → exp ∈ ( ℂ –cn→ ℂ ) )
7 2 eldifad ( 𝜑𝐴 ∈ ℂ )
8 7 adantr ( ( 𝜑𝑚 ∈ ℕ ) → 𝐴 ∈ ℂ )
9 simpr ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ )
10 9 peano2nnd ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ )
11 10 nnrpd ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ )
12 9 nnrpd ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ )
13 11 12 rpdivcld ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ )
14 13 relogcld ( ( 𝜑𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ )
15 14 recnd ( ( 𝜑𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℂ )
16 8 15 mulcld ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℂ )
17 9 nncnd ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ )
18 9 nnne0d ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ≠ 0 )
19 8 17 18 divcld ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐴 / 𝑚 ) ∈ ℂ )
20 1cnd ( ( 𝜑𝑚 ∈ ℕ ) → 1 ∈ ℂ )
21 19 20 addcld ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ∈ ℂ )
22 2 adantr ( ( 𝜑𝑚 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
23 22 9 dmgmdivn0 ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ≠ 0 )
24 21 23 logcld ( ( 𝜑𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ∈ ℂ )
25 16 24 subcld ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ∈ ℂ )
26 25 1 fmptd ( 𝜑𝐺 : ℕ ⟶ ℂ )
27 26 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ ℂ )
28 3 4 27 serf ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℂ )
29 1 2 lgamcvg ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) )
30 lgamcl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ )
31 2 30 syl ( 𝜑 → ( log Γ ‘ 𝐴 ) ∈ ℂ )
32 2 dmgmn0 ( 𝜑𝐴 ≠ 0 )
33 7 32 logcld ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ )
34 31 33 addcld ( 𝜑 → ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ∈ ℂ )
35 3 4 6 28 29 34 climcncf ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) ⇝ ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) )
36 efadd ( ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) )
37 31 33 36 syl2anc ( 𝜑 → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) )
38 eflgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
39 2 38 syl ( 𝜑 → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) )
40 eflog ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 )
41 7 32 40 syl2anc ( 𝜑 → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 )
42 39 41 oveq12d ( 𝜑 → ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) )
43 37 42 eqtrd ( 𝜑 → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) )
44 35 43 breqtrd ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) )