Step |
Hyp |
Ref |
Expression |
1 |
|
lgamcvg.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ) |
2 |
|
lgamcvg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
5 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → exp ∈ ( ℂ –cn→ ℂ ) ) |
7 |
2
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
10 |
9
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
11 |
10
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
12 |
9
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
13 |
11 12
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑚 ) ∈ ℝ+ ) |
14 |
13
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ∈ ℂ ) |
16 |
8 15
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) ∈ ℂ ) |
17 |
9
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
18 |
9
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
19 |
8 17 18
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐴 / 𝑚 ) ∈ ℂ ) |
20 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℂ ) |
21 |
19 20
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ∈ ℂ ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
23 |
22 9
|
dmgmdivn0 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 / 𝑚 ) + 1 ) ≠ 0 ) |
24 |
21 23
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ∈ ℂ ) |
25 |
16 24
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑚 ) + 1 ) ) ) ∈ ℂ ) |
26 |
25 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℂ ) |
27 |
26
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
28 |
3 4 27
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℂ ) |
29 |
1 2
|
lgamcvg |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) |
30 |
|
lgamcl |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |
32 |
2
|
dmgmn0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
33 |
7 32
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
34 |
31 33
|
addcld |
⊢ ( 𝜑 → ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ∈ ℂ ) |
35 |
3 4 6 28 29 34
|
climcncf |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) ⇝ ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) ) |
36 |
|
efadd |
⊢ ( ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
37 |
31 33 36
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
38 |
|
eflgam |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) |
39 |
2 38
|
syl |
⊢ ( 𝜑 → ( exp ‘ ( log Γ ‘ 𝐴 ) ) = ( Γ ‘ 𝐴 ) ) |
40 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
41 |
7 32 40
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
42 |
39 41
|
oveq12d |
⊢ ( 𝜑 → ( ( exp ‘ ( log Γ ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |
43 |
37 42
|
eqtrd |
⊢ ( 𝜑 → ( exp ‘ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) = ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |
44 |
35 43
|
breqtrd |
⊢ ( 𝜑 → ( exp ∘ seq 1 ( + , 𝐺 ) ) ⇝ ( ( Γ ‘ 𝐴 ) · 𝐴 ) ) |