Metamath Proof Explorer


Theorem lgamcvglem

Description: Lemma for lgamf and lgamcvg . (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U = x | x r k 0 1 r x + k
lgamucov.a φ A
lgamcvglem.g G = m A log m + 1 m log A m + 1
Assertion lgamcvglem φ log Γ A seq 1 + G log Γ A + log A

Proof

Step Hyp Ref Expression
1 lgamucov.u U = x | x r k 0 1 r x + k
2 lgamucov.a φ A
3 lgamcvglem.g G = m A log m + 1 m log A m + 1
4 1 2 lgamucov2 φ r A U
5 fveq2 z = A log Γ z = log Γ A
6 5 eleq1d z = A log Γ z log Γ A
7 simprl φ r A U r
8 fveq2 x = t x = t
9 8 breq1d x = t x r t r
10 fvoveq1 x = t x + k = t + k
11 10 breq2d x = t 1 r x + k 1 r t + k
12 11 ralbidv x = t k 0 1 r x + k k 0 1 r t + k
13 9 12 anbi12d x = t x r k 0 1 r x + k t r k 0 1 r t + k
14 13 cbvrabv x | x r k 0 1 r x + k = t | t r k 0 1 r t + k
15 1 14 eqtri U = t | t r k 0 1 r t + k
16 eqid m z U z log m + 1 m log z m + 1 = m z U z log m + 1 m log z m + 1
17 7 15 16 lgamgulm2 φ r A U z U log Γ z seq 1 f + m z U z log m + 1 m log z m + 1 u U z U log Γ z + log z
18 17 simpld φ r A U z U log Γ z
19 simprr φ r A U A U
20 6 18 19 rspcdva φ r A U log Γ A
21 nnuz = 1
22 1zzd φ r A U 1
23 1z 1
24 seqfn 1 seq 1 f + m z U z log m + 1 m log z m + 1 Fn 1
25 23 24 ax-mp seq 1 f + m z U z log m + 1 m log z m + 1 Fn 1
26 21 fneq2i seq 1 f + m z U z log m + 1 m log z m + 1 Fn seq 1 f + m z U z log m + 1 m log z m + 1 Fn 1
27 25 26 mpbir seq 1 f + m z U z log m + 1 m log z m + 1 Fn
28 17 simprd φ r A U seq 1 f + m z U z log m + 1 m log z m + 1 u U z U log Γ z + log z
29 ulmf2 seq 1 f + m z U z log m + 1 m log z m + 1 Fn seq 1 f + m z U z log m + 1 m log z m + 1 u U z U log Γ z + log z seq 1 f + m z U z log m + 1 m log z m + 1 : U
30 27 28 29 sylancr φ r A U seq 1 f + m z U z log m + 1 m log z m + 1 : U
31 seqex seq 1 + G V
32 31 a1i φ r A U seq 1 + G V
33 cnex V
34 1 33 rabex2 U V
35 34 a1i φ r A U n U V
36 simpr φ r A U n n
37 36 21 eleqtrdi φ r A U n n 1
38 fz1ssnn 1 n
39 38 a1i φ r A U n 1 n
40 ovexd φ r A U n m z U z log m + 1 m log z m + 1 V
41 35 37 39 40 seqof2 φ r A U n seq 1 f + m z U z log m + 1 m log z m + 1 n = z U seq 1 + m z log m + 1 m log z m + 1 n
42 simplr φ r A U n z = A m z = A
43 42 oveq1d φ r A U n z = A m z log m + 1 m = A log m + 1 m
44 42 oveq1d φ r A U n z = A m z m = A m
45 44 fvoveq1d φ r A U n z = A m log z m + 1 = log A m + 1
46 43 45 oveq12d φ r A U n z = A m z log m + 1 m log z m + 1 = A log m + 1 m log A m + 1
47 46 mpteq2dva φ r A U n z = A m z log m + 1 m log z m + 1 = m A log m + 1 m log A m + 1
48 47 3 eqtr4di φ r A U n z = A m z log m + 1 m log z m + 1 = G
49 48 seqeq3d φ r A U n z = A seq 1 + m z log m + 1 m log z m + 1 = seq 1 + G
50 49 fveq1d φ r A U n z = A seq 1 + m z log m + 1 m log z m + 1 n = seq 1 + G n
51 simplrr φ r A U n A U
52 fvexd φ r A U n seq 1 + G n V
53 41 50 51 52 fvmptd φ r A U n seq 1 f + m z U z log m + 1 m log z m + 1 n A = seq 1 + G n
54 21 22 30 19 32 53 28 ulmclm φ r A U seq 1 + G z U log Γ z + log z A
55 fveq2 z = A log z = log A
56 5 55 oveq12d z = A log Γ z + log z = log Γ A + log A
57 eqid z U log Γ z + log z = z U log Γ z + log z
58 ovex log Γ A + log A V
59 56 57 58 fvmpt A U z U log Γ z + log z A = log Γ A + log A
60 19 59 syl φ r A U z U log Γ z + log z A = log Γ A + log A
61 54 60 breqtrd φ r A U seq 1 + G log Γ A + log A
62 20 61 jca φ r A U log Γ A seq 1 + G log Γ A + log A
63 4 62 rexlimddv φ log Γ A seq 1 + G log Γ A + log A