Metamath Proof Explorer


Theorem lgamucov2

Description: The U regions used in the proof of lgamgulm have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U=x|xrk01rx+k
lgamucov.a φA
Assertion lgamucov2 φrAU

Proof

Step Hyp Ref Expression
1 lgamucov.u U=x|xrk01rx+k
2 lgamucov.a φA
3 eqid TopOpenfld=TopOpenfld
4 1 2 3 lgamucov φrAintTopOpenfldU
5 3 cnfldtop TopOpenfldTop
6 1 ssrab3 U
7 unicntop =TopOpenfld
8 7 ntrss2 TopOpenfldTopUintTopOpenfldUU
9 5 6 8 mp2an intTopOpenfldUU
10 9 sseli AintTopOpenfldUAU
11 10 reximi rAintTopOpenfldUrAU
12 4 11 syl φrAU