Metamath Proof Explorer


Theorem lgamucov2

Description: The U regions used in the proof of lgamgulm have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U = x | x r k 0 1 r x + k
lgamucov.a φ A
Assertion lgamucov2 φ r A U

Proof

Step Hyp Ref Expression
1 lgamucov.u U = x | x r k 0 1 r x + k
2 lgamucov.a φ A
3 eqid TopOpen fld = TopOpen fld
4 1 2 3 lgamucov φ r A int TopOpen fld U
5 3 cnfldtop TopOpen fld Top
6 1 ssrab3 U
7 unicntop = TopOpen fld
8 7 ntrss2 TopOpen fld Top U int TopOpen fld U U
9 5 6 8 mp2an int TopOpen fld U U
10 9 sseli A int TopOpen fld U A U
11 10 reximi r A int TopOpen fld U r A U
12 4 11 syl φ r A U