Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
3 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
4 |
2 3
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
5 |
1
|
logdmss |
⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
6 |
|
fssres |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log ) |
7 |
4 5 6
|
mp2an |
⊢ ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log |
8 |
|
ffn |
⊢ ( ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log → ( log ↾ 𝐷 ) Fn 𝐷 ) |
9 |
7 8
|
ax-mp |
⊢ ( log ↾ 𝐷 ) Fn 𝐷 |
10 |
|
dffn5 |
⊢ ( ( log ↾ 𝐷 ) Fn 𝐷 ↔ ( log ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( log ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
11 |
9 10
|
mpbi |
⊢ ( log ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( log ↾ 𝐷 ) ‘ 𝑥 ) ) |
12 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( log ↾ 𝐷 ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
13 |
1
|
ellogdm |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
14 |
13
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
15 |
1
|
logdmn0 |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
16 |
14 15
|
logcld |
⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
17 |
16
|
replimd |
⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) = ( ( ℜ ‘ ( log ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
18 |
|
relog |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝑥 ) ) = ( log ‘ ( abs ‘ 𝑥 ) ) ) |
19 |
14 15 18
|
syl2anc |
⊢ ( 𝑥 ∈ 𝐷 → ( ℜ ‘ ( log ‘ 𝑥 ) ) = ( log ‘ ( abs ‘ 𝑥 ) ) ) |
20 |
14 15
|
absrpcld |
⊢ ( 𝑥 ∈ 𝐷 → ( abs ‘ 𝑥 ) ∈ ℝ+ ) |
21 |
20
|
fvresd |
⊢ ( 𝑥 ∈ 𝐷 → ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) = ( log ‘ ( abs ‘ 𝑥 ) ) ) |
22 |
19 21
|
eqtr4d |
⊢ ( 𝑥 ∈ 𝐷 → ( ℜ ‘ ( log ‘ 𝑥 ) ) = ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ℜ ‘ ( log ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) = ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
24 |
12 17 23
|
3eqtrd |
⊢ ( 𝑥 ∈ 𝐷 → ( ( log ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
25 |
24
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ( log ↾ 𝐷 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
26 |
11 25
|
eqtri |
⊢ ( log ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
27 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
28 |
27
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
29 |
28
|
a1i |
⊢ ( ⊤ → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
30 |
27
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
31 |
14
|
ssriv |
⊢ 𝐷 ⊆ ℂ |
32 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
33 |
30 31 32
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) |
34 |
33
|
a1i |
⊢ ( ⊤ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
35 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
36 |
|
fssres |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐷 ⊆ ℂ ) → ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ ) |
37 |
35 31 36
|
mp2an |
⊢ ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ |
38 |
37
|
a1i |
⊢ ( ⊤ → ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ ) |
39 |
38
|
feqmptd |
⊢ ( ⊤ → ( abs ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
40 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) = ( abs ‘ 𝑥 ) ) |
41 |
40
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) |
42 |
39 41
|
eqtrdi |
⊢ ( ⊤ → ( abs ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) ) |
43 |
|
ffn |
⊢ ( ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ → ( abs ↾ 𝐷 ) Fn 𝐷 ) |
44 |
37 43
|
ax-mp |
⊢ ( abs ↾ 𝐷 ) Fn 𝐷 |
45 |
40 20
|
eqeltrd |
⊢ ( 𝑥 ∈ 𝐷 → ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) ∈ ℝ+ ) |
46 |
45
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐷 ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) ∈ ℝ+ |
47 |
|
ffnfv |
⊢ ( ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ+ ↔ ( ( abs ↾ 𝐷 ) Fn 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ( ( abs ↾ 𝐷 ) ‘ 𝑥 ) ∈ ℝ+ ) ) |
48 |
44 46 47
|
mpbir2an |
⊢ ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ+ |
49 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
50 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
51 |
49 50
|
sstri |
⊢ ℝ+ ⊆ ℂ |
52 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
53 |
|
rescncf |
⊢ ( 𝐷 ⊆ ℂ → ( abs ∈ ( ℂ –cn→ ℝ ) → ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ ) ) ) |
54 |
31 52 53
|
mp2 |
⊢ ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ ) |
55 |
|
cncffvrn |
⊢ ( ( ℝ+ ⊆ ℂ ∧ ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ ) ) → ( ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ+ ) ↔ ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ+ ) ) |
56 |
51 54 55
|
mp2an |
⊢ ( ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ+ ) ↔ ( abs ↾ 𝐷 ) : 𝐷 ⟶ ℝ+ ) |
57 |
48 56
|
mpbir |
⊢ ( abs ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℝ+ ) |
58 |
42 57
|
eqeltrrdi |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) ∈ ( 𝐷 –cn→ ℝ+ ) ) |
59 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) |
60 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) |
61 |
27 59 60
|
cncfcn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℝ+ ⊆ ℂ ) → ( 𝐷 –cn→ ℝ+ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) ) ) |
62 |
31 51 61
|
mp2an |
⊢ ( 𝐷 –cn→ ℝ+ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) ) |
63 |
58 62
|
eleqtrdi |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) ) ) |
64 |
|
ssid |
⊢ ℂ ⊆ ℂ |
65 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) ) |
66 |
50 64 65
|
mp2an |
⊢ ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) |
67 |
|
relogcn |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
68 |
66 67
|
sselii |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) |
69 |
68
|
a1i |
⊢ ( ⊤ → ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) |
70 |
30
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
71 |
27 60 70
|
cncfcn |
⊢ ( ( ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ+ –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) Cn ( TopOpen ‘ ℂfld ) ) ) |
72 |
51 64 71
|
mp2an |
⊢ ( ℝ+ –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) Cn ( TopOpen ‘ ℂfld ) ) |
73 |
69 72
|
eleqtrdi |
⊢ ( ⊤ → ( log ↾ ℝ+ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ+ ) Cn ( TopOpen ‘ ℂfld ) ) ) |
74 |
34 63 73
|
cnmpt11f |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
75 |
27 59 70
|
cncfcn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
76 |
31 64 75
|
mp2an |
⊢ ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) |
77 |
74 76
|
eleqtrrdi |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
78 |
16
|
imcld |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
79 |
78
|
recnd |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℂ ) |
80 |
79
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℂ ) |
81 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) |
82 |
|
eqidd |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) ) |
83 |
|
oveq2 |
⊢ ( 𝑦 = ( ℑ ‘ ( log ‘ 𝑥 ) ) → ( i · 𝑦 ) = ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) |
84 |
80 81 82 83
|
fmptco |
⊢ ( ⊤ → ( ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) |
85 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐷 –cn→ ℝ ) ⊆ ( 𝐷 –cn→ ℂ ) ) |
86 |
50 64 85
|
mp2an |
⊢ ( 𝐷 –cn→ ℝ ) ⊆ ( 𝐷 –cn→ ℂ ) |
87 |
1
|
logcnlem5 |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) |
88 |
86 87
|
sselii |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℂ ) |
89 |
88
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
90 |
|
ax-icn |
⊢ i ∈ ℂ |
91 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) |
92 |
91
|
mulc1cncf |
⊢ ( i ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
93 |
90 92
|
mp1i |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
94 |
89 93
|
cncfco |
⊢ ( ⊤ → ( ( 𝑦 ∈ ℂ ↦ ( i · 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
95 |
84 94
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
96 |
27 29 77 95
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
97 |
96
|
mptru |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ( ( log ↾ ℝ+ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ) ) ∈ ( 𝐷 –cn→ ℂ ) |
98 |
26 97
|
eqeltri |
⊢ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) |