Description: The continuity domain of log is a subset of the regular domain of log . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | logdmss | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | 1 | ellogdm | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 4 | 1 | logdmn0 | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
| 5 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 7 | 6 | ssriv | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |