| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 2 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 3 |
1 2
|
ax-mp |
⊢ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ |
| 4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 5 |
|
fss |
⊢ ( ( ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ) |
| 6 |
3 4 5
|
mp2an |
⊢ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ |
| 7 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 8 |
|
ovex |
⊢ ( 1 / 𝑥 ) ∈ V |
| 9 |
|
dvrelog |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 10 |
8 9
|
dmmpti |
⊢ dom ( ℝ D ( log ↾ ℝ+ ) ) = ℝ+ |
| 11 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ∧ ℝ+ ⊆ ℝ ) ∧ dom ( ℝ D ( log ↾ ℝ+ ) ) = ℝ+ ) → ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) |
| 12 |
10 11
|
mpan2 |
⊢ ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ∧ ℝ+ ⊆ ℝ ) → ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) |
| 13 |
4 6 7 12
|
mp3an |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) |
| 14 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) → ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ↔ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) ) |
| 15 |
4 13 14
|
mp2an |
⊢ ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ↔ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 16 |
3 15
|
mpbir |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |