Metamath Proof Explorer


Theorem relogcn

Description: The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion relogcn log+:+cn

Proof

Step Hyp Ref Expression
1 relogf1o log+:+1-1 onto
2 f1of log+:+1-1 ontolog+:+
3 1 2 ax-mp log+:+
4 ax-resscn
5 fss log+:+log+:+
6 3 4 5 mp2an log+:+
7 rpssre +
8 ovex 1xV
9 dvrelog Dlog+=x+1x
10 8 9 dmmpti domlog+=+
11 dvcn log+:++domlog+=+log+:+cn
12 10 11 mpan2 log+:++log+:+cn
13 4 6 7 12 mp3an log+:+cn
14 cncfcdm log+:+cnlog+:+cnlog+:+
15 4 13 14 mp2an log+:+cnlog+:+
16 3 15 mpbir log+:+cn