Metamath Proof Explorer


Theorem dvrelog

Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvrelog D log + = x + 1 x

Proof

Step Hyp Ref Expression
1 dfrelog log + = exp -1
2 1 oveq2i D log + = D exp -1
3 reeff1o exp : 1-1 onto +
4 f1of exp : 1-1 onto + exp : +
5 3 4 ax-mp exp : +
6 rpssre +
7 fss exp : + + exp :
8 5 6 7 mp2an exp :
9 ax-resscn
10 efcn exp : cn
11 rescncf exp : cn exp : cn
12 9 10 11 mp2 exp : cn
13 cncffvrn exp : cn exp : cn exp :
14 9 12 13 mp2an exp : cn exp :
15 8 14 mpbir exp : cn
16 15 a1i exp : cn
17 reelprrecn
18 eff exp :
19 ssid
20 dvef D exp = exp
21 20 dmeqi dom exp = dom exp
22 18 fdmi dom exp =
23 21 22 eqtri dom exp =
24 9 23 sseqtrri dom exp
25 dvres3 exp : dom exp D exp = exp
26 17 18 19 24 25 mp4an D exp = exp
27 20 reseq1i exp = exp
28 26 27 eqtri D exp = exp
29 28 dmeqi dom exp = dom exp
30 5 fdmi dom exp =
31 29 30 eqtri dom exp =
32 31 a1i dom exp =
33 0nrp ¬ 0 +
34 28 rneqi ran exp = ran exp
35 f1ofo exp : 1-1 onto + exp : onto +
36 forn exp : onto + ran exp = +
37 3 35 36 mp2b ran exp = +
38 34 37 eqtri ran exp = +
39 38 eleq2i 0 ran exp 0 +
40 33 39 mtbir ¬ 0 ran exp
41 40 a1i ¬ 0 ran exp
42 3 a1i exp : 1-1 onto +
43 16 32 41 42 dvcnvre D exp -1 = x + 1 exp exp -1 x
44 43 mptru D exp -1 = x + 1 exp exp -1 x
45 28 fveq1i exp exp -1 x = exp exp -1 x
46 f1ocnvfv2 exp : 1-1 onto + x + exp exp -1 x = x
47 3 46 mpan x + exp exp -1 x = x
48 45 47 syl5eq x + exp exp -1 x = x
49 48 oveq2d x + 1 exp exp -1 x = 1 x
50 49 mpteq2ia x + 1 exp exp -1 x = x + 1 x
51 44 50 eqtri D exp -1 = x + 1 x
52 2 51 eqtri D log + = x + 1 x