Step |
Hyp |
Ref |
Expression |
1 |
|
dfrelog |
⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) |
2 |
1
|
oveq2i |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ◡ ( exp ↾ ℝ ) ) |
3 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
4 |
|
f1of |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
5 |
3 4
|
ax-mp |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
6 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
7 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
8 |
5 6 7
|
mp2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
11 |
|
rescncf |
⊢ ( ℝ ⊆ ℂ → ( exp ∈ ( ℂ –cn→ ℂ ) → ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) ) |
12 |
9 10 11
|
mp2 |
⊢ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) |
13 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) → ( ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) ) |
14 |
9 12 13
|
mp2an |
⊢ ( ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
15 |
8 14
|
mpbir |
⊢ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) |
16 |
15
|
a1i |
⊢ ( ⊤ → ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ) |
17 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
18 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
19 |
|
ssid |
⊢ ℂ ⊆ ℂ |
20 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
21 |
20
|
dmeqi |
⊢ dom ( ℂ D exp ) = dom exp |
22 |
18
|
fdmi |
⊢ dom exp = ℂ |
23 |
21 22
|
eqtri |
⊢ dom ( ℂ D exp ) = ℂ |
24 |
9 23
|
sseqtrri |
⊢ ℝ ⊆ dom ( ℂ D exp ) |
25 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D exp ) ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) ) |
26 |
17 18 19 24 25
|
mp4an |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) |
27 |
20
|
reseq1i |
⊢ ( ( ℂ D exp ) ↾ ℝ ) = ( exp ↾ ℝ ) |
28 |
26 27
|
eqtri |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) |
29 |
28
|
dmeqi |
⊢ dom ( ℝ D ( exp ↾ ℝ ) ) = dom ( exp ↾ ℝ ) |
30 |
5
|
fdmi |
⊢ dom ( exp ↾ ℝ ) = ℝ |
31 |
29 30
|
eqtri |
⊢ dom ( ℝ D ( exp ↾ ℝ ) ) = ℝ |
32 |
31
|
a1i |
⊢ ( ⊤ → dom ( ℝ D ( exp ↾ ℝ ) ) = ℝ ) |
33 |
|
0nrp |
⊢ ¬ 0 ∈ ℝ+ |
34 |
28
|
rneqi |
⊢ ran ( ℝ D ( exp ↾ ℝ ) ) = ran ( exp ↾ ℝ ) |
35 |
|
f1ofo |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ ) |
36 |
|
forn |
⊢ ( ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ → ran ( exp ↾ ℝ ) = ℝ+ ) |
37 |
3 35 36
|
mp2b |
⊢ ran ( exp ↾ ℝ ) = ℝ+ |
38 |
34 37
|
eqtri |
⊢ ran ( ℝ D ( exp ↾ ℝ ) ) = ℝ+ |
39 |
38
|
eleq2i |
⊢ ( 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) ↔ 0 ∈ ℝ+ ) |
40 |
33 39
|
mtbir |
⊢ ¬ 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) |
41 |
40
|
a1i |
⊢ ( ⊤ → ¬ 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) ) |
42 |
3
|
a1i |
⊢ ( ⊤ → ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) |
43 |
16 32 41 42
|
dvcnvre |
⊢ ( ⊤ → ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) ) |
44 |
43
|
mptru |
⊢ ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) |
45 |
28
|
fveq1i |
⊢ ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) |
46 |
|
f1ocnvfv2 |
⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) |
47 |
3 46
|
mpan |
⊢ ( 𝑥 ∈ ℝ+ → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) |
48 |
45 47
|
syl5eq |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) |
49 |
48
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) = ( 1 / 𝑥 ) ) |
50 |
49
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
51 |
44 50
|
eqtri |
⊢ ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
52 |
2 51
|
eqtri |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |