Metamath Proof Explorer


Theorem dvcnvre

Description: The derivative rule for inverse functions. If F is a continuous and differentiable bijective function from X to Y which never has derivative 0 , then ` ``' F is also differentiable, and its derivative is the reciprocal of the derivative of F ` . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvcnvre.f φF:Xcn
dvcnvre.d φdomF=X
dvcnvre.z φ¬0ranF
dvcnvre.1 φF:X1-1 ontoY
Assertion dvcnvre φDF-1=xY1FF-1x

Proof

Step Hyp Ref Expression
1 dvcnvre.f φF:Xcn
2 dvcnvre.d φdomF=X
3 dvcnvre.z φ¬0ranF
4 dvcnvre.1 φF:X1-1 ontoY
5 eqid TopOpenfld=TopOpenfld
6 5 tgioo2 topGenran.=TopOpenfld𝑡
7 reelprrecn
8 7 a1i φ
9 retop topGenran.Top
10 f1ofo F:X1-1 ontoYF:XontoY
11 forn F:XontoYranF=Y
12 4 10 11 3syl φranF=Y
13 cncff F:XcnF:X
14 frn F:XranF
15 1 13 14 3syl φranF
16 12 15 eqsstrrd φY
17 uniretop =topGenran.
18 17 ntrss2 topGenran.TopYinttopGenran.YY
19 9 16 18 sylancr φinttopGenran.YY
20 f1ocnvfv2 F:X1-1 ontoYxYFF-1x=x
21 4 20 sylan φxYFF-1x=x
22 eqid abs2=abs2
23 22 rexmet abs2∞Met
24 dvbsss domF
25 24 a1i φdomF
26 2 25 eqsstrrd φX
27 17 ntrss2 topGenran.TopXinttopGenran.XX
28 9 26 27 sylancr φinttopGenran.XX
29 ax-resscn
30 29 a1i φ
31 1 13 syl φF:X
32 fss F:XF:X
33 31 29 32 sylancl φF:X
34 30 33 26 6 5 dvbssntr φdomFinttopGenran.X
35 2 34 eqsstrrd φXinttopGenran.X
36 28 35 eqssd φinttopGenran.X=X
37 17 isopn3 topGenran.TopXXtopGenran.inttopGenran.X=X
38 9 26 37 sylancr φXtopGenran.inttopGenran.X=X
39 36 38 mpbird φXtopGenran.
40 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
41 f1of F-1:Y1-1 ontoXF-1:YX
42 4 40 41 3syl φF-1:YX
43 42 ffvelcdmda φxYF-1xX
44 eqid MetOpenabs2=MetOpenabs2
45 22 44 tgioo topGenran.=MetOpenabs2
46 45 mopni2 abs2∞MetXtopGenran.F-1xXr+F-1xballabs2rX
47 23 39 43 46 mp3an2ani φxYr+F-1xballabs2rX
48 1 ad2antrr φxYr+F-1xballabs2rXF:Xcn
49 2 ad2antrr φxYr+F-1xballabs2rXdomF=X
50 3 ad2antrr φxYr+F-1xballabs2rX¬0ranF
51 4 ad2antrr φxYr+F-1xballabs2rXF:X1-1 ontoY
52 43 adantr φxYr+F-1xballabs2rXF-1xX
53 rphalfcl r+r2+
54 53 ad2antrl φxYr+F-1xballabs2rXr2+
55 26 ad2antrr φxYr+F-1xballabs2rXX
56 55 52 sseldd φxYr+F-1xballabs2rXF-1x
57 54 rpred φxYr+F-1xballabs2rXr2
58 56 57 resubcld φxYr+F-1xballabs2rXF-1xr2
59 56 57 readdcld φxYr+F-1xballabs2rXF-1x+r2
60 elicc2 F-1xr2F-1x+r2yF-1xr2F-1x+r2yF-1xr2yyF-1x+r2
61 58 59 60 syl2anc φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1xr2yyF-1x+r2
62 61 biimpa φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1xr2yyF-1x+r2
63 62 simp1d φxYr+F-1xballabs2rXyF-1xr2F-1x+r2y
64 56 adantr φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1x
65 simplrl φxYr+F-1xballabs2rXyF-1xr2F-1x+r2r+
66 65 rpred φxYr+F-1xballabs2rXyF-1xr2F-1x+r2r
67 64 66 resubcld φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr
68 58 adantr φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr2
69 65 53 syl φxYr+F-1xballabs2rXyF-1xr2F-1x+r2r2+
70 69 rpred φxYr+F-1xballabs2rXyF-1xr2F-1x+r2r2
71 rphalflt r+r2<r
72 65 71 syl φxYr+F-1xballabs2rXyF-1xr2F-1x+r2r2<r
73 70 66 64 72 ltsub2dd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr<F-1xr2
74 62 simp2d φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr2y
75 67 68 63 73 74 ltletrd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr<y
76 59 adantr φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1x+r2
77 64 66 readdcld φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1x+r
78 62 simp3d φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1x+r2
79 70 66 64 72 ltadd2dd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1x+r2<F-1x+r
80 63 76 77 78 79 lelttrd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2y<F-1x+r
81 67 rexrd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1xr*
82 77 rexrd φxYr+F-1xballabs2rXyF-1xr2F-1x+r2F-1x+r*
83 elioo2 F-1xr*F-1x+r*yF-1xrF-1x+ryF-1xr<yy<F-1x+r
84 81 82 83 syl2anc φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1xrF-1x+ryF-1xr<yy<F-1x+r
85 63 75 80 84 mpbir3and φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1xrF-1x+r
86 85 ex φxYr+F-1xballabs2rXyF-1xr2F-1x+r2yF-1xrF-1x+r
87 86 ssrdv φxYr+F-1xballabs2rXF-1xr2F-1x+r2F-1xrF-1x+r
88 rpre r+r
89 88 ad2antrl φxYr+F-1xballabs2rXr
90 22 bl2ioo F-1xrF-1xballabs2r=F-1xrF-1x+r
91 56 89 90 syl2anc φxYr+F-1xballabs2rXF-1xballabs2r=F-1xrF-1x+r
92 87 91 sseqtrrd φxYr+F-1xballabs2rXF-1xr2F-1x+r2F-1xballabs2r
93 simprr φxYr+F-1xballabs2rXF-1xballabs2rX
94 92 93 sstrd φxYr+F-1xballabs2rXF-1xr2F-1x+r2X
95 eqid topGenran.=topGenran.
96 eqid TopOpenfld𝑡X=TopOpenfld𝑡X
97 eqid TopOpenfld𝑡Y=TopOpenfld𝑡Y
98 48 49 50 51 52 54 94 95 5 96 97 dvcnvrelem2 φxYr+F-1xballabs2rXFF-1xinttopGenran.YF-1TopOpenfld𝑡YCnPTopOpenfld𝑡XFF-1x
99 47 98 rexlimddv φxYFF-1xinttopGenran.YF-1TopOpenfld𝑡YCnPTopOpenfld𝑡XFF-1x
100 99 simpld φxYFF-1xinttopGenran.Y
101 21 100 eqeltrrd φxYxinttopGenran.Y
102 19 101 eqelssd φinttopGenran.Y=Y
103 17 isopn3 topGenran.TopYYtopGenran.inttopGenran.Y=Y
104 9 16 103 sylancr φYtopGenran.inttopGenran.Y=Y
105 102 104 mpbird φYtopGenran.
106 99 simprd φxYF-1TopOpenfld𝑡YCnPTopOpenfld𝑡XFF-1x
107 21 fveq2d φxYTopOpenfld𝑡YCnPTopOpenfld𝑡XFF-1x=TopOpenfld𝑡YCnPTopOpenfld𝑡Xx
108 106 107 eleqtrd φxYF-1TopOpenfld𝑡YCnPTopOpenfld𝑡Xx
109 108 ralrimiva φxYF-1TopOpenfld𝑡YCnPTopOpenfld𝑡Xx
110 5 cnfldtopon TopOpenfldTopOn
111 16 29 sstrdi φY
112 resttopon TopOpenfldTopOnYTopOpenfld𝑡YTopOnY
113 110 111 112 sylancr φTopOpenfld𝑡YTopOnY
114 26 29 sstrdi φX
115 resttopon TopOpenfldTopOnXTopOpenfld𝑡XTopOnX
116 110 114 115 sylancr φTopOpenfld𝑡XTopOnX
117 cncnp TopOpenfld𝑡YTopOnYTopOpenfld𝑡XTopOnXF-1TopOpenfld𝑡YCnTopOpenfld𝑡XF-1:YXxYF-1TopOpenfld𝑡YCnPTopOpenfld𝑡Xx
118 113 116 117 syl2anc φF-1TopOpenfld𝑡YCnTopOpenfld𝑡XF-1:YXxYF-1TopOpenfld𝑡YCnPTopOpenfld𝑡Xx
119 42 109 118 mpbir2and φF-1TopOpenfld𝑡YCnTopOpenfld𝑡X
120 5 97 96 cncfcn YXYcnX=TopOpenfld𝑡YCnTopOpenfld𝑡X
121 111 114 120 syl2anc φYcnX=TopOpenfld𝑡YCnTopOpenfld𝑡X
122 119 121 eleqtrrd φF-1:YcnX
123 5 6 8 105 4 122 2 3 dvcnv φDF-1=xY1FF-1x