Metamath Proof Explorer


Theorem dvcvx

Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses dvcvx.a φ A
dvcvx.b φ B
dvcvx.l φ A < B
dvcvx.f φ F : A B cn
dvcvx.d φ F Isom < , < A B W
dvcvx.t φ T 0 1
dvcvx.c C = T A + 1 T B
Assertion dvcvx φ F C < T F A + 1 T F B

Proof

Step Hyp Ref Expression
1 dvcvx.a φ A
2 dvcvx.b φ B
3 dvcvx.l φ A < B
4 dvcvx.f φ F : A B cn
5 dvcvx.d φ F Isom < , < A B W
6 dvcvx.t φ T 0 1
7 dvcvx.c C = T A + 1 T B
8 elioore T 0 1 T
9 6 8 syl φ T
10 9 1 remulcld φ T A
11 1re 1
12 resubcl 1 T 1 T
13 11 9 12 sylancr φ 1 T
14 13 2 remulcld φ 1 T B
15 10 14 readdcld φ T A + 1 T B
16 7 15 eqeltrid φ C
17 1cnd φ 1
18 9 recnd φ T
19 1 recnd φ A
20 17 18 19 subdird φ 1 T A = 1 A T A
21 19 mulid2d φ 1 A = A
22 21 oveq1d φ 1 A T A = A T A
23 20 22 eqtrd φ 1 T A = A T A
24 eliooord T 0 1 0 < T T < 1
25 6 24 syl φ 0 < T T < 1
26 25 simprd φ T < 1
27 posdif T 1 T < 1 0 < 1 T
28 9 11 27 sylancl φ T < 1 0 < 1 T
29 26 28 mpbid φ 0 < 1 T
30 ltmul2 A B 1 T 0 < 1 T A < B 1 T A < 1 T B
31 1 2 13 29 30 syl112anc φ A < B 1 T A < 1 T B
32 3 31 mpbid φ 1 T A < 1 T B
33 23 32 eqbrtrrd φ A T A < 1 T B
34 1 10 14 ltsubadd2d φ A T A < 1 T B A < T A + 1 T B
35 33 34 mpbid φ A < T A + 1 T B
36 35 7 breqtrrdi φ A < C
37 1 leidd φ A A
38 2 recnd φ B
39 17 18 38 subdird φ 1 T B = 1 B T B
40 38 mulid2d φ 1 B = B
41 40 oveq1d φ 1 B T B = B T B
42 39 41 eqtrd φ 1 T B = B T B
43 9 2 remulcld φ T B
44 25 simpld φ 0 < T
45 ltmul2 A B T 0 < T A < B T A < T B
46 1 2 9 44 45 syl112anc φ A < B T A < T B
47 3 46 mpbid φ T A < T B
48 10 43 2 47 ltsub2dd φ B T B < B T A
49 42 48 eqbrtrd φ 1 T B < B T A
50 10 14 2 ltaddsub2d φ T A + 1 T B < B 1 T B < B T A
51 49 50 mpbird φ T A + 1 T B < B
52 7 51 eqbrtrid φ C < B
53 16 2 52 ltled φ C B
54 iccss A B A A C B A C A B
55 1 2 37 53 54 syl22anc φ A C A B
56 rescncf A C A B F : A B cn F A C : A C cn
57 55 4 56 sylc φ F A C : A C cn
58 ax-resscn
59 58 a1i φ
60 cncff F : A B cn F : A B
61 4 60 syl φ F : A B
62 fss F : A B F : A B
63 61 58 62 sylancl φ F : A B
64 iccssre A B A B
65 1 2 64 syl2anc φ A B
66 iccssre A C A C
67 1 16 66 syl2anc φ A C
68 eqid TopOpen fld = TopOpen fld
69 68 tgioo2 topGen ran . = TopOpen fld 𝑡
70 68 69 dvres F : A B A B A C D F A C = F int topGen ran . A C
71 59 63 65 67 70 syl22anc φ D F A C = F int topGen ran . A C
72 iccntr A C int topGen ran . A C = A C
73 1 16 72 syl2anc φ int topGen ran . A C = A C
74 73 reseq2d φ F int topGen ran . A C = F A C
75 71 74 eqtrd φ D F A C = F A C
76 75 dmeqd φ dom F A C = dom F A C
77 dmres dom F A C = A C dom F
78 2 rexrd φ B *
79 iooss2 B * C B A C A B
80 78 53 79 syl2anc φ A C A B
81 isof1o F Isom < , < A B W F : A B 1-1 onto W
82 f1odm F : A B 1-1 onto W dom F = A B
83 5 81 82 3syl φ dom F = A B
84 80 83 sseqtrrd φ A C dom F
85 df-ss A C dom F A C dom F = A C
86 84 85 sylib φ A C dom F = A C
87 77 86 eqtrid φ dom F A C = A C
88 76 87 eqtrd φ dom F A C = A C
89 1 16 36 57 88 mvth φ x A C F A C x = F A C C F A C A C A
90 1 16 36 ltled φ A C
91 2 leidd φ B B
92 iccss A B A C B B C B A B
93 1 2 90 91 92 syl22anc φ C B A B
94 rescncf C B A B F : A B cn F C B : C B cn
95 93 4 94 sylc φ F C B : C B cn
96 iccssre C B C B
97 16 2 96 syl2anc φ C B
98 68 69 dvres F : A B A B C B D F C B = F int topGen ran . C B
99 59 63 65 97 98 syl22anc φ D F C B = F int topGen ran . C B
100 iccntr C B int topGen ran . C B = C B
101 16 2 100 syl2anc φ int topGen ran . C B = C B
102 101 reseq2d φ F int topGen ran . C B = F C B
103 99 102 eqtrd φ D F C B = F C B
104 103 dmeqd φ dom F C B = dom F C B
105 dmres dom F C B = C B dom F
106 1 rexrd φ A *
107 iooss1 A * A C C B A B
108 106 90 107 syl2anc φ C B A B
109 108 83 sseqtrrd φ C B dom F
110 df-ss C B dom F C B dom F = C B
111 109 110 sylib φ C B dom F = C B
112 105 111 eqtrid φ dom F C B = C B
113 104 112 eqtrd φ dom F C B = C B
114 16 2 52 95 113 mvth φ y C B F C B y = F C B B F C B C B C
115 reeanv x A C y C B F A C x = F A C C F A C A C A F C B y = F C B B F C B C B C x A C F A C x = F A C C F A C A C A y C B F C B y = F C B B F C B C B C
116 75 fveq1d φ F A C x = F A C x
117 fvres x A C F A C x = F x
118 117 adantr x A C y C B F A C x = F x
119 116 118 sylan9eq φ x A C y C B F A C x = F x
120 16 rexrd φ C *
121 ubicc2 A * C * A C C A C
122 106 120 90 121 syl3anc φ C A C
123 122 fvresd φ F A C C = F C
124 lbicc2 A * C * A C A A C
125 106 120 90 124 syl3anc φ A A C
126 125 fvresd φ F A C A = F A
127 123 126 oveq12d φ F A C C F A C A = F C F A
128 127 oveq1d φ F A C C F A C A C A = F C F A C A
129 128 adantr φ x A C y C B F A C C F A C A C A = F C F A C A
130 119 129 eqeq12d φ x A C y C B F A C x = F A C C F A C A C A F x = F C F A C A
131 103 fveq1d φ F C B y = F C B y
132 fvres y C B F C B y = F y
133 132 adantl x A C y C B F C B y = F y
134 131 133 sylan9eq φ x A C y C B F C B y = F y
135 ubicc2 C * B * C B B C B
136 120 78 53 135 syl3anc φ B C B
137 136 fvresd φ F C B B = F B
138 lbicc2 C * B * C B C C B
139 120 78 53 138 syl3anc φ C C B
140 139 fvresd φ F C B C = F C
141 137 140 oveq12d φ F C B B F C B C = F B F C
142 141 oveq1d φ F C B B F C B C B C = F B F C B C
143 142 adantr φ x A C y C B F C B B F C B C B C = F B F C B C
144 134 143 eqeq12d φ x A C y C B F C B y = F C B B F C B C B C F y = F B F C B C
145 130 144 anbi12d φ x A C y C B F A C x = F A C C F A C A C A F C B y = F C B B F C B C B C F x = F C F A C A F y = F B F C B C
146 elioore x A C x
147 146 ad2antrl φ x A C y C B x
148 16 adantr φ x A C y C B C
149 elioore y C B y
150 149 ad2antll φ x A C y C B y
151 eliooord x A C A < x x < C
152 151 ad2antrl φ x A C y C B A < x x < C
153 152 simprd φ x A C y C B x < C
154 eliooord y C B C < y y < B
155 154 ad2antll φ x A C y C B C < y y < B
156 155 simpld φ x A C y C B C < y
157 147 148 150 153 156 lttrd φ x A C y C B x < y
158 5 adantr φ x A C y C B F Isom < , < A B W
159 80 sselda φ x A C x A B
160 159 adantrr φ x A C y C B x A B
161 108 sselda φ y C B y A B
162 161 adantrl φ x A C y C B y A B
163 isorel F Isom < , < A B W x A B y A B x < y F x < F y
164 158 160 162 163 syl12anc φ x A C y C B x < y F x < F y
165 157 164 mpbid φ x A C y C B F x < F y
166 breq12 F x = F C F A C A F y = F B F C B C F x < F y F C F A C A < F B F C B C
167 165 166 syl5ibcom φ x A C y C B F x = F C F A C A F y = F B F C B C F C F A C A < F B F C B C
168 55 122 sseldd φ C A B
169 61 168 ffvelrnd φ F C
170 55 125 sseldd φ A A B
171 61 170 ffvelrnd φ F A
172 169 171 resubcld φ F C F A
173 29 gt0ne0d φ 1 T 0
174 172 13 173 redivcld φ F C F A 1 T
175 93 136 sseldd φ B A B
176 61 175 ffvelrnd φ F B
177 176 169 resubcld φ F B F C
178 44 gt0ne0d φ T 0
179 177 9 178 redivcld φ F B F C T
180 2 1 resubcld φ B A
181 1 2 posdifd φ A < B 0 < B A
182 3 181 mpbid φ 0 < B A
183 ltdiv1 F C F A 1 T F B F C T B A 0 < B A F C F A 1 T < F B F C T F C F A 1 T B A < F B F C T B A
184 174 179 180 182 183 syl112anc φ F C F A 1 T < F B F C T F C F A 1 T B A < F B F C T B A
185 172 recnd φ F C F A
186 185 18 mulcomd φ F C F A T = T F C F A
187 169 recnd φ F C
188 171 recnd φ F A
189 18 187 188 subdid φ T F C F A = T F C T F A
190 186 189 eqtrd φ F C F A T = T F C T F A
191 177 recnd φ F B F C
192 13 recnd φ 1 T
193 191 192 mulcomd φ F B F C 1 T = 1 T F B F C
194 176 recnd φ F B
195 192 194 187 subdid φ 1 T F B F C = 1 T F B 1 T F C
196 193 195 eqtrd φ F B F C 1 T = 1 T F B 1 T F C
197 190 196 breq12d φ F C F A T < F B F C 1 T T F C T F A < 1 T F B 1 T F C
198 9 44 jca φ T 0 < T
199 13 29 jca φ 1 T 0 < 1 T
200 lt2mul2div F C F A T 0 < T F B F C 1 T 0 < 1 T F C F A T < F B F C 1 T F C F A 1 T < F B F C T
201 172 198 177 199 200 syl22anc φ F C F A T < F B F C 1 T F C F A 1 T < F B F C T
202 9 169 remulcld φ T F C
203 202 recnd φ T F C
204 13 169 remulcld φ 1 T F C
205 204 recnd φ 1 T F C
206 9 171 remulcld φ T F A
207 206 recnd φ T F A
208 203 205 207 addsubd φ T F C + 1 T F C - T F A = T F C - T F A + 1 T F C
209 ax-1cn 1
210 pncan3 T 1 T + 1 - T = 1
211 18 209 210 sylancl φ T + 1 - T = 1
212 211 oveq1d φ T + 1 - T F C = 1 F C
213 18 192 187 adddird φ T + 1 - T F C = T F C + 1 T F C
214 187 mulid2d φ 1 F C = F C
215 212 213 214 3eqtr3d φ T F C + 1 T F C = F C
216 215 oveq1d φ T F C + 1 T F C - T F A = F C T F A
217 208 216 eqtr3d φ T F C - T F A + 1 T F C = F C T F A
218 217 breq1d φ T F C - T F A + 1 T F C < 1 T F B F C T F A < 1 T F B
219 202 206 resubcld φ T F C T F A
220 13 176 remulcld φ 1 T F B
221 219 204 220 ltaddsubd φ T F C - T F A + 1 T F C < 1 T F B T F C T F A < 1 T F B 1 T F C
222 169 206 220 ltsubadd2d φ F C T F A < 1 T F B F C < T F A + 1 T F B
223 218 221 222 3bitr3d φ T F C T F A < 1 T F B 1 T F C F C < T F A + 1 T F B
224 197 201 223 3bitr3d φ F C F A 1 T < F B F C T F C < T F A + 1 T F B
225 180 recnd φ B A
226 182 gt0ne0d φ B A 0
227 185 192 225 173 226 divdiv1d φ F C F A 1 T B A = F C F A 1 T B A
228 23 oveq2d φ 1 T B 1 T A = 1 T B A T A
229 14 recnd φ 1 T B
230 10 recnd φ T A
231 229 19 230 subsub3d φ 1 T B A T A = 1 T B + T A - A
232 228 231 eqtrd φ 1 T B 1 T A = 1 T B + T A - A
233 192 38 19 subdid φ 1 T B A = 1 T B 1 T A
234 230 229 addcomd φ T A + 1 T B = 1 T B + T A
235 7 234 eqtrid φ C = 1 T B + T A
236 235 oveq1d φ C A = 1 T B + T A - A
237 232 233 236 3eqtr4d φ 1 T B A = C A
238 237 oveq2d φ F C F A 1 T B A = F C F A C A
239 227 238 eqtrd φ F C F A 1 T B A = F C F A C A
240 191 18 225 178 226 divdiv1d φ F B F C T B A = F B F C T B A
241 38 229 230 subsub4d φ B - 1 T B - T A = B 1 T B + T A
242 42 oveq2d φ B 1 T B = B B T B
243 43 recnd φ T B
244 38 243 nncand φ B B T B = T B
245 242 244 eqtrd φ B 1 T B = T B
246 245 oveq1d φ B - 1 T B - T A = T B T A
247 241 246 eqtr3d φ B 1 T B + T A = T B T A
248 235 oveq2d φ B C = B 1 T B + T A
249 18 38 19 subdid φ T B A = T B T A
250 247 248 249 3eqtr4d φ B C = T B A
251 250 oveq2d φ F B F C B C = F B F C T B A
252 240 251 eqtr4d φ F B F C T B A = F B F C B C
253 239 252 breq12d φ F C F A 1 T B A < F B F C T B A F C F A C A < F B F C B C
254 184 224 253 3bitr3rd φ F C F A C A < F B F C B C F C < T F A + 1 T F B
255 254 adantr φ x A C y C B F C F A C A < F B F C B C F C < T F A + 1 T F B
256 167 255 sylibd φ x A C y C B F x = F C F A C A F y = F B F C B C F C < T F A + 1 T F B
257 145 256 sylbid φ x A C y C B F A C x = F A C C F A C A C A F C B y = F C B B F C B C B C F C < T F A + 1 T F B
258 257 rexlimdvva φ x A C y C B F A C x = F A C C F A C A C A F C B y = F C B B F C B C B C F C < T F A + 1 T F B
259 115 258 syl5bir φ x A C F A C x = F A C C F A C A C A y C B F C B y = F C B B F C B C B C F C < T F A + 1 T F B
260 89 114 259 mp2and φ F C < T F A + 1 T F B