Metamath Proof Explorer


Theorem iooss2

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooss2 C*BCABAC

Proof

Step Hyp Ref Expression
1 df-ioo .=x*,y*z*|x<zz<y
2 xrltletr w*B*C*w<BBCw<C
3 1 1 2 ixxss2 C*BCABAC