| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnv.j |
|
| 2 |
|
dvcnv.k |
|
| 3 |
|
dvcnv.s |
|
| 4 |
|
dvcnv.y |
|
| 5 |
|
dvcnv.f |
|
| 6 |
|
dvcnv.i |
|
| 7 |
|
dvcnv.d |
|
| 8 |
|
dvcnv.z |
|
| 9 |
|
dvfg |
|
| 10 |
3 9
|
syl |
|
| 11 |
|
recnprss |
|
| 12 |
3 11
|
syl |
|
| 13 |
|
f1ocnv |
|
| 14 |
|
f1of |
|
| 15 |
5 13 14
|
3syl |
|
| 16 |
|
dvbsss |
|
| 17 |
7 16
|
eqsstrrdi |
|
| 18 |
17 12
|
sstrd |
|
| 19 |
15 18
|
fssd |
|
| 20 |
1
|
cnfldtopon |
|
| 21 |
|
resttopon |
|
| 22 |
20 12 21
|
sylancr |
|
| 23 |
2 22
|
eqeltrid |
|
| 24 |
|
toponss |
|
| 25 |
23 4 24
|
syl2anc |
|
| 26 |
12 19 25
|
dvbss |
|
| 27 |
|
f1ocnvfv2 |
|
| 28 |
5 27
|
sylan |
|
| 29 |
3
|
adantr |
|
| 30 |
4
|
adantr |
|
| 31 |
5
|
adantr |
|
| 32 |
6
|
adantr |
|
| 33 |
7
|
adantr |
|
| 34 |
8
|
adantr |
|
| 35 |
15
|
ffvelcdmda |
|
| 36 |
1 2 29 30 31 32 33 34 35
|
dvcnvlem |
|
| 37 |
28 36
|
eqbrtrrd |
|
| 38 |
|
reldv |
|
| 39 |
38
|
releldmi |
|
| 40 |
37 39
|
syl |
|
| 41 |
26 40
|
eqelssd |
|
| 42 |
41
|
feq2d |
|
| 43 |
10 42
|
mpbid |
|
| 44 |
43
|
feqmptd |
|
| 45 |
10
|
adantr |
|
| 46 |
45
|
ffund |
|
| 47 |
|
funbrfv |
|
| 48 |
46 37 47
|
sylc |
|
| 49 |
48
|
mpteq2dva |
|
| 50 |
44 49
|
eqtrd |
|