Description: A weak version of dvcnvre , valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvcnv.j | |
|
dvcnv.k | |
||
dvcnv.s | |
||
dvcnv.y | |
||
dvcnv.f | |
||
dvcnv.i | |
||
dvcnv.d | |
||
dvcnv.z | |
||
Assertion | dvcnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnv.j | |
|
2 | dvcnv.k | |
|
3 | dvcnv.s | |
|
4 | dvcnv.y | |
|
5 | dvcnv.f | |
|
6 | dvcnv.i | |
|
7 | dvcnv.d | |
|
8 | dvcnv.z | |
|
9 | dvfg | |
|
10 | 3 9 | syl | |
11 | recnprss | |
|
12 | 3 11 | syl | |
13 | f1ocnv | |
|
14 | f1of | |
|
15 | 5 13 14 | 3syl | |
16 | dvbsss | |
|
17 | 7 16 | eqsstrrdi | |
18 | 17 12 | sstrd | |
19 | 15 18 | fssd | |
20 | 1 | cnfldtopon | |
21 | resttopon | |
|
22 | 20 12 21 | sylancr | |
23 | 2 22 | eqeltrid | |
24 | toponss | |
|
25 | 23 4 24 | syl2anc | |
26 | 12 19 25 | dvbss | |
27 | f1ocnvfv2 | |
|
28 | 5 27 | sylan | |
29 | 3 | adantr | |
30 | 4 | adantr | |
31 | 5 | adantr | |
32 | 6 | adantr | |
33 | 7 | adantr | |
34 | 8 | adantr | |
35 | 15 | ffvelcdmda | |
36 | 1 2 29 30 31 32 33 34 35 | dvcnvlem | |
37 | 28 36 | eqbrtrrd | |
38 | reldv | |
|
39 | 38 | releldmi | |
40 | 37 39 | syl | |
41 | 26 40 | eqelssd | |
42 | 41 | feq2d | |
43 | 10 42 | mpbid | |
44 | 43 | feqmptd | |
45 | 10 | adantr | |
46 | 45 | ffund | |
47 | funbrfv | |
|
48 | 46 37 47 | sylc | |
49 | 48 | mpteq2dva | |
50 | 44 49 | eqtrd | |