Metamath Proof Explorer


Theorem dvcnv

Description: A weak version of dvcnvre , valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses dvcnv.j J=TopOpenfld
dvcnv.k K=J𝑡S
dvcnv.s φS
dvcnv.y φYK
dvcnv.f φF:X1-1 ontoY
dvcnv.i φF-1:YcnX
dvcnv.d φdomFS=X
dvcnv.z φ¬0ranFS
Assertion dvcnv φSDF-1=xY1FSF-1x

Proof

Step Hyp Ref Expression
1 dvcnv.j J=TopOpenfld
2 dvcnv.k K=J𝑡S
3 dvcnv.s φS
4 dvcnv.y φYK
5 dvcnv.f φF:X1-1 ontoY
6 dvcnv.i φF-1:YcnX
7 dvcnv.d φdomFS=X
8 dvcnv.z φ¬0ranFS
9 dvfg SF-1S:domF-1S
10 3 9 syl φF-1S:domF-1S
11 recnprss SS
12 3 11 syl φS
13 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
14 f1of F-1:Y1-1 ontoXF-1:YX
15 5 13 14 3syl φF-1:YX
16 dvbsss domFSS
17 7 16 eqsstrrdi φXS
18 17 12 sstrd φX
19 15 18 fssd φF-1:Y
20 1 cnfldtopon JTopOn
21 resttopon JTopOnSJ𝑡STopOnS
22 20 12 21 sylancr φJ𝑡STopOnS
23 2 22 eqeltrid φKTopOnS
24 toponss KTopOnSYKYS
25 23 4 24 syl2anc φYS
26 12 19 25 dvbss φdomF-1SY
27 f1ocnvfv2 F:X1-1 ontoYxYFF-1x=x
28 5 27 sylan φxYFF-1x=x
29 3 adantr φxYS
30 4 adantr φxYYK
31 5 adantr φxYF:X1-1 ontoY
32 6 adantr φxYF-1:YcnX
33 7 adantr φxYdomFS=X
34 8 adantr φxY¬0ranFS
35 15 ffvelcdmda φxYF-1xX
36 1 2 29 30 31 32 33 34 35 dvcnvlem φxYFF-1xF-1S1FSF-1x
37 28 36 eqbrtrrd φxYxF-1S1FSF-1x
38 reldv RelF-1S
39 38 releldmi xF-1S1FSF-1xxdomF-1S
40 37 39 syl φxYxdomF-1S
41 26 40 eqelssd φdomF-1S=Y
42 41 feq2d φF-1S:domF-1SF-1S:Y
43 10 42 mpbid φF-1S:Y
44 43 feqmptd φSDF-1=xYF-1Sx
45 10 adantr φxYF-1S:domF-1S
46 45 ffund φxYFunF-1S
47 funbrfv FunF-1SxF-1S1FSF-1xF-1Sx=1FSF-1x
48 46 37 47 sylc φxYF-1Sx=1FSF-1x
49 48 mpteq2dva φxYF-1Sx=xY1FSF-1x
50 44 49 eqtrd φSDF-1=xY1FSF-1x