Metamath Proof Explorer


Theorem dvexp3

Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion dvexp3 Ndx0xNdx=x0NxN1

Proof

Step Hyp Ref Expression
1 elznn0nn NN0NN
2 cnelprrecn
3 2 a1i N0
4 expcl xN0xN
5 4 ancoms N0xxN
6 c0ex 0V
7 ovex NxN1V
8 6 7 ifex ifN=00NxN1V
9 8 a1i N0xifN=00NxN1V
10 dvexp2 N0dxxNdx=xifN=00NxN1
11 difssd N00
12 eqid TopOpenfld=TopOpenfld
13 12 cnfldtopon TopOpenfldTopOn
14 13 toponrestid TopOpenfld=TopOpenfld𝑡
15 12 cnfldhaus TopOpenfldHaus
16 0cn 0
17 unicntop =TopOpenfld
18 17 sncld TopOpenfldHaus00ClsdTopOpenfld
19 15 16 18 mp2an 0ClsdTopOpenfld
20 17 cldopn 0ClsdTopOpenfld0TopOpenfld
21 19 20 ax-mp 0TopOpenfld
22 21 a1i N00TopOpenfld
23 3 5 9 10 11 14 12 22 dvmptres N0dx0xNdx=x0ifN=00NxN1
24 ifid ifN=0NxN1NxN1=NxN1
25 id N=0N=0
26 oveq1 N=0N1=01
27 26 oveq2d N=0xN1=x01
28 25 27 oveq12d N=0NxN1=0x01
29 eldifsn x0xx0
30 0z 0
31 peano2zm 001
32 30 31 ax-mp 01
33 expclz xx001x01
34 32 33 mp3an3 xx0x01
35 29 34 sylbi x0x01
36 35 adantl N0x0x01
37 36 mul02d N0x00x01=0
38 28 37 sylan9eqr N0x0N=0NxN1=0
39 38 ifeq1da N0x0ifN=0NxN1NxN1=ifN=00NxN1
40 24 39 eqtr3id N0x0NxN1=ifN=00NxN1
41 40 mpteq2dva N0x0NxN1=x0ifN=00NxN1
42 23 41 eqtr4d N0dx0xNdx=x0NxN1
43 eldifi x0x
44 43 adantl NNx0x
45 simpll NNx0N
46 45 recnd NNx0N
47 nnnn0 NN0
48 47 ad2antlr NNx0N0
49 expneg2 xNN0xN=1xN
50 44 46 48 49 syl3anc NNx0xN=1xN
51 50 mpteq2dva NNx0xN=x01xN
52 51 oveq2d NNdx0xNdx=dx01xNdx
53 2 a1i NN
54 eldifsni x0x0
55 54 adantl NNx0x0
56 nnz NN
57 56 ad2antlr NNx0N
58 44 55 57 expclzd NNx0xN
59 44 55 57 expne0d NNx0xN0
60 eldifsn xN0xNxN0
61 58 59 60 sylanbrc NNx0xN0
62 ovex - Nx-N-1V
63 62 a1i NNx0- Nx-N-1V
64 simpr NNy0y0
65 eldifsn y0yy0
66 64 65 sylib NNy0yy0
67 reccl yy01y
68 66 67 syl NNy01y
69 negex 1y2V
70 69 a1i NNy01y2V
71 simpr NNxx
72 47 ad2antlr NNxN0
73 71 72 expcld NNxxN
74 62 a1i NNx- Nx-N-1V
75 dvexp NdxxNdx=x- Nx-N-1
76 75 adantl NNdxxNdx=x- Nx-N-1
77 difssd NN0
78 21 a1i NN0TopOpenfld
79 53 73 74 76 77 14 12 78 dvmptres NNdx0xNdx=x0- Nx-N-1
80 ax-1cn 1
81 dvrec 1dy01ydy=y01y2
82 80 81 mp1i NNdy01ydy=y01y2
83 oveq2 y=xN1y=1xN
84 oveq1 y=xNy2=xN2
85 84 oveq2d y=xN1y2=1xN2
86 85 negeqd y=xN1y2=1xN2
87 53 53 61 63 68 70 79 82 83 86 dvmptco NNdx01xNdx=x01xN2- Nx-N-1
88 2z 2
89 88 a1i NNx02
90 expmulz xx0N2x- N2=xN2
91 44 55 57 89 90 syl22anc NNx0x- N2=xN2
92 91 eqcomd NNx0xN2=x- N2
93 92 oveq2d NNx01xN2=1x- N2
94 93 negeqd NNx01xN2=1x- N2
95 peano2zm N-N-1
96 57 95 syl NNx0-N-1
97 44 55 96 expclzd NNx0x-N-1
98 46 97 mulneg1d NNx0- Nx-N-1=Nx-N-1
99 94 98 oveq12d NNx01xN2- Nx-N-1=1x- N2Nx-N-1
100 zmulcl N2- N2
101 57 88 100 sylancl NNx0- N2
102 44 55 101 expclzd NNx0x- N2
103 44 55 101 expne0d NNx0x- N20
104 102 103 reccld NNx01x- N2
105 46 97 mulcld NNx0Nx-N-1
106 104 105 mul2negd NNx01x- N2Nx-N-1=1x- N2Nx-N-1
107 104 46 97 mul12d NNx01x- N2Nx-N-1=N1x- N2x-N-1
108 44 55 101 96 expsubd NNx0x- N-1-- N2=x-N-1x- N2
109 nncn NN
110 109 ad2antlr NNx0N
111 80 a1i NNx01
112 101 zcnd NNx0- N2
113 110 111 112 sub32d NNx0- N-1-- N2=- N-- N2-1
114 110 times2d NNx0- N2=-N+- N
115 110 46 negsubd NNx0-N+- N=-N-N
116 114 115 eqtrd NNx0- N2=-N-N
117 116 oveq2d NNx0-N-- N2=-N--N-N
118 110 46 nncand NNx0-N--N-N=N
119 117 118 eqtrd NNx0-N-- N2=N
120 119 oveq1d NNx0- N-- N2-1=N1
121 113 120 eqtrd NNx0- N-1-- N2=N1
122 121 oveq2d NNx0x- N-1-- N2=xN1
123 97 102 103 divrec2d NNx0x-N-1x- N2=1x- N2x-N-1
124 108 122 123 3eqtr3rd NNx01x- N2x-N-1=xN1
125 124 oveq2d NNx0N1x- N2x-N-1=NxN1
126 107 125 eqtrd NNx01x- N2Nx-N-1=NxN1
127 99 106 126 3eqtrd NNx01xN2- Nx-N-1=NxN1
128 127 mpteq2dva NNx01xN2- Nx-N-1=x0NxN1
129 52 87 128 3eqtrd NNdx0xNdx=x0NxN1
130 42 129 jaoi N0NNdx0xNdx=x0NxN1
131 1 130 sylbi Ndx0xNdx=x0NxN1