| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0nn |  |-  ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 2 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 3 | 2 | a1i |  |-  ( N e. NN0 -> CC e. { RR , CC } ) | 
						
							| 4 |  | expcl |  |-  ( ( x e. CC /\ N e. NN0 ) -> ( x ^ N ) e. CC ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( N e. NN0 /\ x e. CC ) -> ( x ^ N ) e. CC ) | 
						
							| 6 |  | c0ex |  |-  0 e. _V | 
						
							| 7 |  | ovex |  |-  ( N x. ( x ^ ( N - 1 ) ) ) e. _V | 
						
							| 8 | 6 7 | ifex |  |-  if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( N e. NN0 /\ x e. CC ) -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) e. _V ) | 
						
							| 10 |  | dvexp2 |  |-  ( N e. NN0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 11 |  | difssd |  |-  ( N e. NN0 -> ( CC \ { 0 } ) C_ CC ) | 
						
							| 12 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 13 | 12 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 14 | 13 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 15 |  | cnn0opn |  |-  ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) | 
						
							| 16 | 15 | a1i |  |-  ( N e. NN0 -> ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) | 
						
							| 17 | 3 5 9 10 11 14 12 16 | dvmptres |  |-  ( N e. NN0 -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 18 |  | ifid |  |-  if ( N = 0 , ( N x. ( x ^ ( N - 1 ) ) ) , ( N x. ( x ^ ( N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) | 
						
							| 19 |  | id |  |-  ( N = 0 -> N = 0 ) | 
						
							| 20 |  | oveq1 |  |-  ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( N = 0 -> ( x ^ ( N - 1 ) ) = ( x ^ ( 0 - 1 ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( N = 0 -> ( N x. ( x ^ ( N - 1 ) ) ) = ( 0 x. ( x ^ ( 0 - 1 ) ) ) ) | 
						
							| 23 |  | eldifsn |  |-  ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 24 |  | 0z |  |-  0 e. ZZ | 
						
							| 25 |  | peano2zm |  |-  ( 0 e. ZZ -> ( 0 - 1 ) e. ZZ ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( 0 - 1 ) e. ZZ | 
						
							| 27 |  | expclz |  |-  ( ( x e. CC /\ x =/= 0 /\ ( 0 - 1 ) e. ZZ ) -> ( x ^ ( 0 - 1 ) ) e. CC ) | 
						
							| 28 | 26 27 | mp3an3 |  |-  ( ( x e. CC /\ x =/= 0 ) -> ( x ^ ( 0 - 1 ) ) e. CC ) | 
						
							| 29 | 23 28 | sylbi |  |-  ( x e. ( CC \ { 0 } ) -> ( x ^ ( 0 - 1 ) ) e. CC ) | 
						
							| 30 | 29 | adantl |  |-  ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( 0 - 1 ) ) e. CC ) | 
						
							| 31 | 30 | mul02d |  |-  ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( 0 x. ( x ^ ( 0 - 1 ) ) ) = 0 ) | 
						
							| 32 | 22 31 | sylan9eqr |  |-  ( ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) /\ N = 0 ) -> ( N x. ( x ^ ( N - 1 ) ) ) = 0 ) | 
						
							| 33 | 32 | ifeq1da |  |-  ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> if ( N = 0 , ( N x. ( x ^ ( N - 1 ) ) ) , ( N x. ( x ^ ( N - 1 ) ) ) ) = if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 34 | 18 33 | eqtr3id |  |-  ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( x ^ ( N - 1 ) ) ) = if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 35 | 34 | mpteq2dva |  |-  ( N e. NN0 -> ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 36 | 17 35 | eqtr4d |  |-  ( N e. NN0 -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 37 |  | eldifi |  |-  ( x e. ( CC \ { 0 } ) -> x e. CC ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> x e. CC ) | 
						
							| 39 |  | simpll |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> N e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> N e. CC ) | 
						
							| 41 |  | nnnn0 |  |-  ( -u N e. NN -> -u N e. NN0 ) | 
						
							| 42 | 41 | ad2antlr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. NN0 ) | 
						
							| 43 |  | expneg2 |  |-  ( ( x e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( x ^ N ) = ( 1 / ( x ^ -u N ) ) ) | 
						
							| 44 | 38 40 42 43 | syl3anc |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ N ) = ( 1 / ( x ^ -u N ) ) ) | 
						
							| 45 | 44 | mpteq2dva |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) = ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( CC _D ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) ) | 
						
							| 47 | 2 | a1i |  |-  ( ( N e. RR /\ -u N e. NN ) -> CC e. { RR , CC } ) | 
						
							| 48 |  | eldifsni |  |-  ( x e. ( CC \ { 0 } ) -> x =/= 0 ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> x =/= 0 ) | 
						
							| 50 |  | nnz |  |-  ( -u N e. NN -> -u N e. ZZ ) | 
						
							| 51 | 50 | ad2antlr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. ZZ ) | 
						
							| 52 | 38 49 51 | expclzd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) e. CC ) | 
						
							| 53 | 38 49 51 | expne0d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) =/= 0 ) | 
						
							| 54 |  | eldifsn |  |-  ( ( x ^ -u N ) e. ( CC \ { 0 } ) <-> ( ( x ^ -u N ) e. CC /\ ( x ^ -u N ) =/= 0 ) ) | 
						
							| 55 | 52 53 54 | sylanbrc |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) e. ( CC \ { 0 } ) ) | 
						
							| 56 |  | ovex |  |-  ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V | 
						
							| 57 | 56 | a1i |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V ) | 
						
							| 58 |  | simpr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) | 
						
							| 59 |  | eldifsn |  |-  ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) | 
						
							| 60 | 58 59 | sylib |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> ( y e. CC /\ y =/= 0 ) ) | 
						
							| 61 |  | reccl |  |-  ( ( y e. CC /\ y =/= 0 ) -> ( 1 / y ) e. CC ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> ( 1 / y ) e. CC ) | 
						
							| 63 |  | negex |  |-  -u ( 1 / ( y ^ 2 ) ) e. _V | 
						
							| 64 | 63 | a1i |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> -u ( 1 / ( y ^ 2 ) ) e. _V ) | 
						
							| 65 |  | simpr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> x e. CC ) | 
						
							| 66 | 41 | ad2antlr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> -u N e. NN0 ) | 
						
							| 67 | 65 66 | expcld |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> ( x ^ -u N ) e. CC ) | 
						
							| 68 | 56 | a1i |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V ) | 
						
							| 69 |  | dvexp |  |-  ( -u N e. NN -> ( CC _D ( x e. CC |-> ( x ^ -u N ) ) ) = ( x e. CC |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. CC |-> ( x ^ -u N ) ) ) = ( x e. CC |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 71 |  | difssd |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC \ { 0 } ) C_ CC ) | 
						
							| 72 | 15 | a1i |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) | 
						
							| 73 | 47 67 68 70 71 14 12 72 | dvmptres |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ -u N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 74 |  | ax-1cn |  |-  1 e. CC | 
						
							| 75 |  | dvrec |  |-  ( 1 e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) | 
						
							| 76 | 74 75 | mp1i |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) | 
						
							| 77 |  | oveq2 |  |-  ( y = ( x ^ -u N ) -> ( 1 / y ) = ( 1 / ( x ^ -u N ) ) ) | 
						
							| 78 |  | oveq1 |  |-  ( y = ( x ^ -u N ) -> ( y ^ 2 ) = ( ( x ^ -u N ) ^ 2 ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( y = ( x ^ -u N ) -> ( 1 / ( y ^ 2 ) ) = ( 1 / ( ( x ^ -u N ) ^ 2 ) ) ) | 
						
							| 80 | 79 | negeqd |  |-  ( y = ( x ^ -u N ) -> -u ( 1 / ( y ^ 2 ) ) = -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) ) | 
						
							| 81 | 47 47 55 57 62 64 73 76 77 80 | dvmptco |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) ) | 
						
							| 82 |  | 2z |  |-  2 e. ZZ | 
						
							| 83 | 82 | a1i |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> 2 e. ZZ ) | 
						
							| 84 |  | expmulz |  |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( -u N e. ZZ /\ 2 e. ZZ ) ) -> ( x ^ ( -u N x. 2 ) ) = ( ( x ^ -u N ) ^ 2 ) ) | 
						
							| 85 | 38 49 51 83 84 | syl22anc |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) = ( ( x ^ -u N ) ^ 2 ) ) | 
						
							| 86 | 85 | eqcomd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( x ^ -u N ) ^ 2 ) = ( x ^ ( -u N x. 2 ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( 1 / ( ( x ^ -u N ) ^ 2 ) ) = ( 1 / ( x ^ ( -u N x. 2 ) ) ) ) | 
						
							| 88 | 87 | negeqd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) = -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) ) | 
						
							| 89 |  | peano2zm |  |-  ( -u N e. ZZ -> ( -u N - 1 ) e. ZZ ) | 
						
							| 90 | 51 89 | syl |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - 1 ) e. ZZ ) | 
						
							| 91 | 38 49 90 | expclzd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N - 1 ) ) e. CC ) | 
						
							| 92 | 40 91 | mulneg1d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) = -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) | 
						
							| 93 | 88 92 | oveq12d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) = ( -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 94 |  | zmulcl |  |-  ( ( -u N e. ZZ /\ 2 e. ZZ ) -> ( -u N x. 2 ) e. ZZ ) | 
						
							| 95 | 51 82 94 | sylancl |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) e. ZZ ) | 
						
							| 96 | 38 49 95 | expclzd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) e. CC ) | 
						
							| 97 | 38 49 95 | expne0d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) =/= 0 ) | 
						
							| 98 | 96 97 | reccld |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( 1 / ( x ^ ( -u N x. 2 ) ) ) e. CC ) | 
						
							| 99 | 40 91 | mulcld |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( x ^ ( -u N - 1 ) ) ) e. CC ) | 
						
							| 100 | 98 99 | mul2negd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 101 | 98 40 91 | mul12d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) ) | 
						
							| 102 | 38 49 95 90 | expsubd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( ( -u N - 1 ) - ( -u N x. 2 ) ) ) = ( ( x ^ ( -u N - 1 ) ) / ( x ^ ( -u N x. 2 ) ) ) ) | 
						
							| 103 |  | nncn |  |-  ( -u N e. NN -> -u N e. CC ) | 
						
							| 104 | 103 | ad2antlr |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. CC ) | 
						
							| 105 | 74 | a1i |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> 1 e. CC ) | 
						
							| 106 | 95 | zcnd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) e. CC ) | 
						
							| 107 | 104 105 106 | sub32d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - 1 ) - ( -u N x. 2 ) ) = ( ( -u N - ( -u N x. 2 ) ) - 1 ) ) | 
						
							| 108 | 104 | times2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) = ( -u N + -u N ) ) | 
						
							| 109 | 104 40 | negsubd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N + -u N ) = ( -u N - N ) ) | 
						
							| 110 | 108 109 | eqtrd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) = ( -u N - N ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N x. 2 ) ) = ( -u N - ( -u N - N ) ) ) | 
						
							| 112 | 104 40 | nncand |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N - N ) ) = N ) | 
						
							| 113 | 111 112 | eqtrd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N x. 2 ) ) = N ) | 
						
							| 114 | 113 | oveq1d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - ( -u N x. 2 ) ) - 1 ) = ( N - 1 ) ) | 
						
							| 115 | 107 114 | eqtrd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - 1 ) - ( -u N x. 2 ) ) = ( N - 1 ) ) | 
						
							| 116 | 115 | oveq2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( ( -u N - 1 ) - ( -u N x. 2 ) ) ) = ( x ^ ( N - 1 ) ) ) | 
						
							| 117 | 91 96 97 | divrec2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( x ^ ( -u N - 1 ) ) / ( x ^ ( -u N x. 2 ) ) ) = ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) | 
						
							| 118 | 102 116 117 | 3eqtr3rd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) = ( x ^ ( N - 1 ) ) ) | 
						
							| 119 | 118 | oveq2d |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) | 
						
							| 120 | 101 119 | eqtrd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) | 
						
							| 121 | 93 100 120 | 3eqtrd |  |-  ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) | 
						
							| 122 | 121 | mpteq2dva |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( x e. ( CC \ { 0 } ) |-> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 123 | 46 81 122 | 3eqtrd |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 124 | 36 123 | jaoi |  |-  ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) | 
						
							| 125 | 1 124 | sylbi |  |-  ( N e. ZZ -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |