Metamath Proof Explorer


Theorem dvexp2

Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvexp2 N0dxxNdx=xifN=00NxN1

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 dvexp NdxxNdx=xNxN1
3 nnne0 NN0
4 3 neneqd N¬N=0
5 4 iffalsed NifN=00NxN1=NxN1
6 5 mpteq2dv NxifN=00NxN1=xNxN1
7 2 6 eqtr4d NdxxNdx=xifN=00NxN1
8 oveq2 N=0xN=x0
9 exp0 xx0=1
10 8 9 sylan9eq N=0xxN=1
11 10 mpteq2dva N=0xxN=x1
12 fconstmpt ×1=x1
13 11 12 eqtr4di N=0xxN=×1
14 13 oveq2d N=0dxxNdx=D×1
15 ax-1cn 1
16 dvconst 1D×1=×0
17 15 16 ax-mp D×1=×0
18 14 17 eqtrdi N=0dxxNdx=×0
19 fconstmpt ×0=x0
20 18 19 eqtrdi N=0dxxNdx=x0
21 iftrue N=0ifN=00NxN1=0
22 21 mpteq2dv N=0xifN=00NxN1=x0
23 20 22 eqtr4d N=0dxxNdx=xifN=00NxN1
24 7 23 jaoi NN=0dxxNdx=xifN=00NxN1
25 1 24 sylbi N0dxxNdx=xifN=00NxN1