Metamath Proof Explorer


Theorem bl2ioo

Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypothesis remet.1 D=abs2
Assertion bl2ioo ABAballDB=ABA+B

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 1 remetdval AxADx=Ax
3 recn AA
4 recn xx
5 abssub AxAx=xA
6 3 4 5 syl2an AxAx=xA
7 2 6 eqtrd AxADx=xA
8 7 breq1d AxADx<BxA<B
9 8 adantlr ABxADx<BxA<B
10 absdiflt xABxA<BAB<xx<A+B
11 10 3expb xABxA<BAB<xx<A+B
12 11 ancoms ABxxA<BAB<xx<A+B
13 9 12 bitrd ABxADx<BAB<xx<A+B
14 13 pm5.32da ABxADx<BxAB<xx<A+B
15 3anass xAB<xx<A+BxAB<xx<A+B
16 14 15 bitr4di ABxADx<BxAB<xx<A+B
17 rexr BB*
18 1 rexmet D∞Met
19 elbl D∞MetAB*xAballDBxADx<B
20 18 19 mp3an1 AB*xAballDBxADx<B
21 17 20 sylan2 ABxAballDBxADx<B
22 resubcl ABAB
23 readdcl ABA+B
24 rexr ABAB*
25 rexr A+BA+B*
26 elioo2 AB*A+B*xABA+BxAB<xx<A+B
27 24 25 26 syl2an ABA+BxABA+BxAB<xx<A+B
28 22 23 27 syl2anc ABxABA+BxAB<xx<A+B
29 16 21 28 3bitr4d ABxAballDBxABA+B
30 29 eqrdv ABAballDB=ABA+B