Step |
Hyp |
Ref |
Expression |
1 |
|
remet.1 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
1
|
remetdval |
|- ( ( A e. RR /\ x e. RR ) -> ( A D x ) = ( abs ` ( A - x ) ) ) |
3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
4 |
|
recn |
|- ( x e. RR -> x e. CC ) |
5 |
|
abssub |
|- ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( A e. RR /\ x e. RR ) -> ( abs ` ( A - x ) ) = ( abs ` ( x - A ) ) ) |
7 |
2 6
|
eqtrd |
|- ( ( A e. RR /\ x e. RR ) -> ( A D x ) = ( abs ` ( x - A ) ) ) |
8 |
7
|
breq1d |
|- ( ( A e. RR /\ x e. RR ) -> ( ( A D x ) < B <-> ( abs ` ( x - A ) ) < B ) ) |
9 |
8
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( A D x ) < B <-> ( abs ` ( x - A ) ) < B ) ) |
10 |
|
absdiflt |
|- ( ( x e. RR /\ A e. RR /\ B e. RR ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
11 |
10
|
3expb |
|- ( ( x e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
12 |
11
|
ancoms |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( abs ` ( x - A ) ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
13 |
9 12
|
bitrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. RR ) -> ( ( A D x ) < B <-> ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
14 |
13
|
pm5.32da |
|- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ ( A D x ) < B ) <-> ( x e. RR /\ ( ( A - B ) < x /\ x < ( A + B ) ) ) ) ) |
15 |
|
3anass |
|- ( ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) <-> ( x e. RR /\ ( ( A - B ) < x /\ x < ( A + B ) ) ) ) |
16 |
14 15
|
bitr4di |
|- ( ( A e. RR /\ B e. RR ) -> ( ( x e. RR /\ ( A D x ) < B ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
17 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
18 |
1
|
rexmet |
|- D e. ( *Met ` RR ) |
19 |
|
elbl |
|- ( ( D e. ( *Met ` RR ) /\ A e. RR /\ B e. RR* ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
20 |
18 19
|
mp3an1 |
|- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
21 |
17 20
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A ( ball ` D ) B ) <-> ( x e. RR /\ ( A D x ) < B ) ) ) |
22 |
|
resubcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
23 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
24 |
|
rexr |
|- ( ( A - B ) e. RR -> ( A - B ) e. RR* ) |
25 |
|
rexr |
|- ( ( A + B ) e. RR -> ( A + B ) e. RR* ) |
26 |
|
elioo2 |
|- ( ( ( A - B ) e. RR* /\ ( A + B ) e. RR* ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
27 |
24 25 26
|
syl2an |
|- ( ( ( A - B ) e. RR /\ ( A + B ) e. RR ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
28 |
22 23 27
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( ( A - B ) (,) ( A + B ) ) <-> ( x e. RR /\ ( A - B ) < x /\ x < ( A + B ) ) ) ) |
29 |
16 21 28
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A ( ball ` D ) B ) <-> x e. ( ( A - B ) (,) ( A + B ) ) ) ) |
30 |
29
|
eqrdv |
|- ( ( A e. RR /\ B e. RR ) -> ( A ( ball ` D ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |