Metamath Proof Explorer


Theorem ioo2bl

Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis remet.1 D=abs2
Assertion ioo2bl ABAB=A+B2ballDBA2

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 readdcl BAB+A
3 2 ancoms ABB+A
4 3 rehalfcld ABB+A2
5 resubcl BABA
6 5 ancoms ABBA
7 6 rehalfcld ABBA2
8 1 bl2ioo B+A2BA2B+A2ballDBA2=B+A2BA2B+A2+BA2
9 4 7 8 syl2anc ABB+A2ballDBA2=B+A2BA2B+A2+BA2
10 recn BB
11 recn AA
12 addcom BAB+A=A+B
13 10 11 12 syl2anr ABB+A=A+B
14 13 oveq1d ABB+A2=A+B2
15 14 oveq1d ABB+A2ballDBA2=A+B2ballDBA2
16 halfaddsub BAB+A2+BA2=BB+A2BA2=A
17 10 11 16 syl2anr ABB+A2+BA2=BB+A2BA2=A
18 17 simprd ABB+A2BA2=A
19 17 simpld ABB+A2+BA2=B
20 18 19 oveq12d ABB+A2BA2B+A2+BA2=AB
21 9 15 20 3eqtr3rd ABAB=A+B2ballDBA2