Metamath Proof Explorer


Theorem ioo2blex

Description: An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypothesis remet.1 D=abs2
Assertion ioo2blex ABABranballD

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 1 ioo2bl ABAB=A+B2ballDBA2
3 1 rexmet D∞Met
4 readdcl ABA+B
5 4 rehalfcld ABA+B2
6 resubcl BABA
7 6 ancoms ABBA
8 7 rehalfcld ABBA2
9 8 rexrd ABBA2*
10 blelrn D∞MetA+B2BA2*A+B2ballDBA2ranballD
11 3 5 9 10 mp3an2i ABA+B2ballDBA2ranballD
12 2 11 eqeltrd ABABranballD