Metamath Proof Explorer


Theorem blelrn

Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blelrn D∞MetXPXR*PballDRranballD

Proof

Step Hyp Ref Expression
1 blf D∞MetXballD:X×*𝒫X
2 1 ffnd D∞MetXballDFnX×*
3 fnovrn ballDFnX×*PXR*PballDRranballD
4 2 3 syl3an1 D∞MetXPXR*PballDRranballD