Metamath Proof Explorer


Theorem blssioo

Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypothesis remet.1 D=abs2
Assertion blssioo ranballDran.

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 1 rexmet D∞Met
3 blrn D∞MetzranballDyr*z=yballDr
4 2 3 ax-mp zranballDyr*z=yballDr
5 elxr r*rr=+∞r=−∞
6 1 bl2ioo yryballDr=yry+r
7 resubcl yryr
8 readdcl yry+r
9 ioof .:*×*𝒫
10 ffn .:*×*𝒫.Fn*×*
11 9 10 ax-mp .Fn*×*
12 rexr yryr*
13 rexr y+ry+r*
14 fnovrn .Fn*×*yr*y+r*yry+rran.
15 11 12 13 14 mp3an3an yry+ryry+rran.
16 7 8 15 syl2anc yryry+rran.
17 6 16 eqeltrd yryballDrran.
18 oveq2 r=+∞yballDr=yballD+∞
19 1 remet DMet
20 blpnf DMetyyballD+∞=
21 19 20 mpan yyballD+∞=
22 18 21 sylan9eqr yr=+∞yballDr=
23 ioomax −∞+∞=
24 ioorebas −∞+∞ran.
25 23 24 eqeltrri ran.
26 22 25 eqeltrdi yr=+∞yballDrran.
27 oveq2 r=−∞yballDr=yballD−∞
28 0xr 0*
29 nltmnf 0*¬0<−∞
30 28 29 ax-mp ¬0<−∞
31 mnfxr −∞*
32 xbln0 D∞Mety−∞*yballD−∞0<−∞
33 2 31 32 mp3an13 yyballD−∞0<−∞
34 33 necon1bbid y¬0<−∞yballD−∞=
35 30 34 mpbii yyballD−∞=
36 27 35 sylan9eqr yr=−∞yballDr=
37 iooid 00=
38 ioorebas 00ran.
39 37 38 eqeltrri ran.
40 36 39 eqeltrdi yr=−∞yballDrran.
41 17 26 40 3jaodan yrr=+∞r=−∞yballDrran.
42 5 41 sylan2b yr*yballDrran.
43 eleq1 z=yballDrzran.yballDrran.
44 42 43 syl5ibrcom yr*z=yballDrzran.
45 44 rexlimivv yr*z=yballDrzran.
46 4 45 sylbi zranballDzran.
47 46 ssriv ranballDran.