| Step |
Hyp |
Ref |
Expression |
| 1 |
|
remet.1 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 2 |
1
|
ioo2bl |
|- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |
| 3 |
1
|
rexmet |
|- D e. ( *Met ` RR ) |
| 4 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 5 |
4
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 6 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 7 |
6
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 8 |
7
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR ) |
| 9 |
8
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR* ) |
| 10 |
|
blelrn |
|- ( ( D e. ( *Met ` RR ) /\ ( ( A + B ) / 2 ) e. RR /\ ( ( B - A ) / 2 ) e. RR* ) -> ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) e. ran ( ball ` D ) ) |
| 11 |
3 5 9 10
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) e. ran ( ball ` D ) ) |
| 12 |
2 11
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) e. ran ( ball ` D ) ) |