Metamath Proof Explorer


Theorem halfaddsub

Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion halfaddsub ABA+B2+AB2=AA+B2AB2=B

Proof

Step Hyp Ref Expression
1 ppncan ABAA+B+AB=A+A
2 1 3anidm13 ABA+B+AB=A+A
3 2times A2A=A+A
4 3 adantr AB2A=A+A
5 2 4 eqtr4d ABA+B+AB=2A
6 5 oveq1d ABA+B+AB2=2A2
7 addcl ABA+B
8 subcl ABAB
9 2cnne0 220
10 divdir A+BAB220A+B+AB2=A+B2+AB2
11 9 10 mp3an3 A+BABA+B+AB2=A+B2+AB2
12 7 8 11 syl2anc ABA+B+AB2=A+B2+AB2
13 2cn 2
14 2ne0 20
15 divcan3 A2202A2=A
16 13 14 15 mp3an23 A2A2=A
17 16 adantr AB2A2=A
18 6 12 17 3eqtr3d ABA+B2+AB2=A
19 pnncan ABBA+B-AB=B+B
20 19 3anidm23 ABA+B-AB=B+B
21 2times B2B=B+B
22 21 adantl AB2B=B+B
23 20 22 eqtr4d ABA+B-AB=2B
24 23 oveq1d ABA+B-AB2=2B2
25 divsubdir A+BAB220A+B-AB2=A+B2AB2
26 9 25 mp3an3 A+BABA+B-AB2=A+B2AB2
27 7 8 26 syl2anc ABA+B-AB2=A+B2AB2
28 divcan3 B2202B2=B
29 13 14 28 mp3an23 B2B2=B
30 29 adantl AB2B2=B
31 24 27 30 3eqtr3d ABA+B2AB2=B
32 18 31 jca ABA+B2+AB2=AA+B2AB2=B