Metamath Proof Explorer


Theorem absdiflt

Description: The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007)

Ref Expression
Assertion absdiflt A B C A B < C B C < A A < B + C

Proof

Step Hyp Ref Expression
1 resubcl A B A B
2 abslt A B C A B < C C < A B A B < C
3 1 2 stoic3 A B C A B < C C < A B A B < C
4 renegcl C C
5 ltaddsub2 B C A B + C < A C < A B
6 4 5 syl3an2 B C A B + C < A C < A B
7 6 3comr A B C B + C < A C < A B
8 recn B B
9 recn C C
10 negsub B C B + C = B C
11 8 9 10 syl2an B C B + C = B C
12 11 3adant1 A B C B + C = B C
13 12 breq1d A B C B + C < A B C < A
14 7 13 bitr3d A B C C < A B B C < A
15 ltsubadd2 A B C A B < C A < B + C
16 14 15 anbi12d A B C C < A B A B < C B C < A A < B + C
17 3 16 bitrd A B C A B < C B C < A A < B + C