Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
3 |
1 2
|
eqsstri |
⊢ 𝐷 ⊆ ℂ |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
6 |
1
|
ellogdm |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
8 |
1
|
logdmn0 |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
9 |
7 8
|
logcld |
⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
10 |
9
|
imcld |
⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
11 |
5 10
|
fmpti |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) : 𝐷 ⟶ ℝ |
12 |
|
eqid |
⊢ if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) = if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) |
13 |
|
eqid |
⊢ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → 𝑦 ∈ 𝐷 ) |
15 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ+ ) |
16 |
1 12 13 14 15
|
logcnlem2 |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+ ) → if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ∈ ℝ+ ) |
17 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑦 ∈ 𝐷 ) |
18 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑧 ∈ ℝ+ ) |
19 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → 𝑤 ∈ 𝐷 ) |
20 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) |
21 |
1 12 13 17 18 19 20
|
logcnlem4 |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑧 ∈ ℝ+ ∧ ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) ) ) → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) |
22 |
21
|
expr |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) ) |
23 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( ℑ ‘ ( log ‘ 𝑥 ) ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) |
24 |
|
fvex |
⊢ ( ℑ ‘ ( log ‘ 𝑦 ) ) ∈ V |
25 |
23 5 24
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( ℑ ‘ ( log ‘ 𝑦 ) ) ) |
27 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑤 → ( ℑ ‘ ( log ‘ 𝑥 ) ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) |
28 |
|
fvex |
⊢ ( ℑ ‘ ( log ‘ 𝑤 ) ) ∈ V |
29 |
27 5 28
|
fvmpt |
⊢ ( 𝑤 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) = ( ℑ ‘ ( log ‘ 𝑤 ) ) ) |
31 |
26 30
|
oveq12d |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) = ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) ) |
33 |
32
|
breq1d |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) ) − ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) < 𝑧 ) ) |
34 |
22 33
|
sylibrd |
⊢ ( ( ( 𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑦 − 𝑤 ) ) < if ( if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ≤ ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) , if ( 𝑦 ∈ ℝ+ , 𝑦 , ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) , ( ( abs ‘ 𝑦 ) · ( 𝑧 / ( 1 + 𝑧 ) ) ) ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 ) − ( ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) ) < 𝑧 ) ) |
35 |
11 16 34
|
elcncf1ii |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) ) |
36 |
3 4 35
|
mp2an |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ∈ ( 𝐷 –cn→ ℝ ) |