| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 2 |
|
logcnlem.s |
⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 3 |
|
logcnlem.t |
⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) |
| 4 |
|
logcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 5 |
|
logcnlem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 6 |
|
logcnlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 7 |
|
logcnlem.l |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) |
| 8 |
1
|
ellogdm |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 9 |
8
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 11 |
1
|
logdmn0 |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 13 |
10 12
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 14 |
13
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 16 |
1
|
ellogdm |
⊢ ( 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ+ ) ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ ) |
| 18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 19 |
1
|
logdmn0 |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ≠ 0 ) |
| 20 |
6 19
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 21 |
18 20
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 22 |
21
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 |
15 23
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) = ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 25 |
21 13
|
imsubd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 26 |
|
efsub |
⊢ ( ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
| 27 |
21 13 26
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
| 28 |
|
eflog |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 29 |
18 20 28
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 30 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 31 |
10 12 30
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 32 |
29 31
|
oveq12d |
⊢ ( 𝜑 → ( ( exp ‘ ( log ‘ 𝐵 ) ) / ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) |
| 33 |
27 32
|
eqtrd |
⊢ ( 𝜑 → ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) |
| 34 |
18 10 12
|
divcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 35 |
18 10 20 12
|
divne0d |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ≠ 0 ) |
| 36 |
21 13
|
subcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 37 |
1 2 3 4 5 6 7
|
logcnlem3 |
⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 38 |
37
|
simpld |
⊢ ( 𝜑 → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 39 |
38 25
|
breqtrrd |
⊢ ( 𝜑 → - π < ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ) |
| 40 |
37
|
simprd |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 41 |
25 40
|
eqbrtrd |
⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 42 |
|
ellogrn |
⊢ ( ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 43 |
36 39 41 42
|
syl3anbrc |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ) |
| 44 |
|
logeftb |
⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( 𝐵 / 𝐴 ) ≠ 0 ∧ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ∈ ran log ) → ( ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) ) |
| 45 |
34 35 43 44
|
syl3anc |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) ) |
| 46 |
33 45
|
mpbird |
⊢ ( 𝜑 → ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) = ( log ‘ ( 𝐵 / 𝐴 ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 49 |
25 48
|
eqtr3d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 51 |
24 50
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 52 |
34 35
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 53 |
52
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 54 |
53
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℂ ) |
| 55 |
54
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℝ ) |
| 56 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 57 |
|
1re |
⊢ 1 ∈ ℝ |
| 58 |
10 18
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 59 |
58
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 60 |
10 12
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 61 |
59 60
|
rerpdivcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 62 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 63 |
57 61 62
|
sylancr |
⊢ ( 𝜑 → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 64 |
34
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 65 |
10
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 66 |
5
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 67 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 68 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 69 |
67 5 68
|
sylancr |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 70 |
66 69
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ ) |
| 71 |
65 70
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ ) |
| 72 |
3 71
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 73 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 75 |
10
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 77 |
76
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 79 |
74 78
|
ifclda |
⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 80 |
2 79
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 81 |
|
ltmin |
⊢ ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ↔ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) ) |
| 82 |
59 80 72 81
|
syl3anc |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ↔ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) ) |
| 83 |
7 82
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) ) |
| 84 |
83
|
simprd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑇 ) |
| 85 |
69
|
rpred |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ ) |
| 86 |
66
|
ltp1d |
⊢ ( 𝜑 → 𝑅 < ( 𝑅 + 1 ) ) |
| 87 |
66
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 88 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 89 |
|
addcom |
⊢ ( ( 𝑅 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑅 + 1 ) = ( 1 + 𝑅 ) ) |
| 90 |
87 88 89
|
sylancl |
⊢ ( 𝜑 → ( 𝑅 + 1 ) = ( 1 + 𝑅 ) ) |
| 91 |
86 90
|
breqtrd |
⊢ ( 𝜑 → 𝑅 < ( 1 + 𝑅 ) ) |
| 92 |
66 85 91
|
ltled |
⊢ ( 𝜑 → 𝑅 ≤ ( 1 + 𝑅 ) ) |
| 93 |
85
|
recnd |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℂ ) |
| 94 |
93
|
mulridd |
⊢ ( 𝜑 → ( ( 1 + 𝑅 ) · 1 ) = ( 1 + 𝑅 ) ) |
| 95 |
92 94
|
breqtrrd |
⊢ ( 𝜑 → 𝑅 ≤ ( ( 1 + 𝑅 ) · 1 ) ) |
| 96 |
57
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 97 |
66 96 69
|
ledivmuld |
⊢ ( 𝜑 → ( ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ↔ 𝑅 ≤ ( ( 1 + 𝑅 ) · 1 ) ) ) |
| 98 |
95 97
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ) |
| 99 |
70 96 60
|
lemul2d |
⊢ ( 𝜑 → ( ( 𝑅 / ( 1 + 𝑅 ) ) ≤ 1 ↔ ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
| 100 |
98 99
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 101 |
65
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 102 |
101
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
| 103 |
100 102
|
breqtrd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 104 |
3 103
|
eqbrtrid |
⊢ ( 𝜑 → 𝑇 ≤ ( abs ‘ 𝐴 ) ) |
| 105 |
59 72 65 84 104
|
ltletrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ 𝐴 ) ) |
| 106 |
105 102
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 107 |
59 96 60
|
ltdivmuld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
| 108 |
106 107
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ) |
| 109 |
|
posdif |
⊢ ( ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 110 |
61 57 109
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < 1 ↔ 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 111 |
108 110
|
mpbid |
⊢ ( 𝜑 → 0 < ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 112 |
58 10 12
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) ∈ ℂ ) |
| 113 |
112
|
releabsd |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) ) |
| 114 |
10 18 10 12
|
divsubdird |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) − ( 𝐵 / 𝐴 ) ) ) |
| 115 |
10 12
|
dividd |
⊢ ( 𝜑 → ( 𝐴 / 𝐴 ) = 1 ) |
| 116 |
115
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐴 ) − ( 𝐵 / 𝐴 ) ) = ( 1 − ( 𝐵 / 𝐴 ) ) ) |
| 117 |
114 116
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝐴 ) = ( 1 − ( 𝐵 / 𝐴 ) ) ) |
| 118 |
117
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) ) |
| 119 |
|
resub |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐵 / 𝐴 ) ∈ ℂ ) → ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 120 |
88 34 119
|
sylancr |
⊢ ( 𝜑 → ( ℜ ‘ ( 1 − ( 𝐵 / 𝐴 ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 121 |
118 120
|
eqtrd |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 122 |
|
re1 |
⊢ ( ℜ ‘ 1 ) = 1 |
| 123 |
122
|
oveq1i |
⊢ ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) = ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 124 |
121 123
|
eqtrdi |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 125 |
58 10 12
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 − 𝐵 ) / 𝐴 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 126 |
113 124 125
|
3brtr3d |
⊢ ( 𝜑 → ( 1 − ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 127 |
96 64 61 126
|
subled |
⊢ ( 𝜑 → ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 128 |
56 63 64 111 127
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 129 |
|
argregt0 |
⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 130 |
34 128 129
|
syl2anc |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 131 |
|
cosq14gt0 |
⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 132 |
130 131
|
syl |
⊢ ( 𝜑 → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 133 |
132
|
gt0ne0d |
⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≠ 0 ) |
| 134 |
53 133
|
retancld |
⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℝ ) |
| 135 |
134
|
recnd |
⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ∈ ℂ ) |
| 136 |
135
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 137 |
|
tanabsge |
⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≤ ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ) |
| 138 |
130 137
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ≤ ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) ) |
| 139 |
128
|
gt0ne0d |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ≠ 0 ) |
| 140 |
|
tanarg |
⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 141 |
34 139 140
|
syl2anc |
⊢ ( 𝜑 → ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 142 |
141
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) = ( abs ‘ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 143 |
34
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 144 |
143
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 145 |
64
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 146 |
144 145 139
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 147 |
56 64 128
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 148 |
64 147
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) = ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( abs ‘ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 150 |
142 146 149
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) = ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 151 |
144
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 152 |
64 66
|
remulcld |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ∈ ℝ ) |
| 153 |
18 10
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 154 |
153 10 12
|
divcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) ∈ ℂ ) |
| 155 |
|
absimle |
⊢ ( ( ( 𝐵 − 𝐴 ) / 𝐴 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 156 |
154 155
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ≤ ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 157 |
18 10 10 12
|
divsubdird |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) = ( ( 𝐵 / 𝐴 ) − ( 𝐴 / 𝐴 ) ) ) |
| 158 |
115
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) − ( 𝐴 / 𝐴 ) ) = ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 159 |
157 158
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 𝐴 ) = ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 160 |
159
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) = ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 161 |
|
imsub |
⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) ) |
| 162 |
34 88 161
|
sylancl |
⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) ) |
| 163 |
|
im1 |
⊢ ( ℑ ‘ 1 ) = 0 |
| 164 |
163
|
oveq2i |
⊢ ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − ( ℑ ‘ 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) |
| 165 |
162 164
|
eqtrdi |
⊢ ( 𝜑 → ( ℑ ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) ) |
| 166 |
144
|
subid1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐵 / 𝐴 ) ) − 0 ) = ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 167 |
160 165 166
|
3eqtrrd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐵 / 𝐴 ) ) = ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 168 |
167
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) ) |
| 169 |
10 18
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 170 |
169
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 171 |
153 10 12
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 172 |
170 171
|
eqtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) = ( abs ‘ ( ( 𝐵 − 𝐴 ) / 𝐴 ) ) ) |
| 173 |
156 168 172
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 174 |
65 59
|
resubcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ℝ ) |
| 175 |
174 66
|
remulcld |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ∈ ℝ ) |
| 176 |
65 152
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ∈ ℝ ) |
| 177 |
59
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| 178 |
88
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 179 |
177 178 87
|
adddid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) = ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 180 |
177
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 181 |
180
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 1 ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 182 |
179 181
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) = ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 183 |
69
|
rpne0d |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ≠ 0 ) |
| 184 |
101 87 93 183
|
divassd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ) |
| 185 |
184 3
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) = 𝑇 ) |
| 186 |
84 185
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) ) |
| 187 |
65 66
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · 𝑅 ) ∈ ℝ ) |
| 188 |
59 187 69
|
ltmuldivd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) / ( 1 + 𝑅 ) ) ) ) |
| 189 |
186 188
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · ( 1 + 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ) |
| 190 |
182 189
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ) |
| 191 |
59 66
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ∈ ℝ ) |
| 192 |
59 191 187
|
ltaddsubd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) + ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) < ( ( abs ‘ 𝐴 ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) ) |
| 193 |
190 192
|
mpbid |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 194 |
101 177 87
|
subdird |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) = ( ( ( abs ‘ 𝐴 ) · 𝑅 ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) · 𝑅 ) ) ) |
| 195 |
193 194
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ) |
| 196 |
60
|
rpne0d |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 197 |
101 177 101 196
|
divsubdird |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 198 |
101 196
|
dividd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
| 199 |
198
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) = ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 200 |
197 199
|
eqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) = ( 1 − ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 201 |
200 127
|
eqbrtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) |
| 202 |
174 64 60
|
ledivmuld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / ( abs ‘ 𝐴 ) ) ≤ ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ↔ ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) ) |
| 203 |
201 202
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) |
| 204 |
65 64
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ) |
| 205 |
174 204 5
|
lemul1d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ↔ ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) ) ) |
| 206 |
203 205
|
mpbid |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) ) |
| 207 |
101 145 87
|
mulassd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) · 𝑅 ) = ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 208 |
206 207
|
breqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ ( 𝐴 − 𝐵 ) ) ) · 𝑅 ) ≤ ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 209 |
59 175 176 195 208
|
ltletrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 210 |
59 152 60
|
ltdivmuld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ( abs ‘ 𝐴 ) · ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) ) |
| 211 |
209 210
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / ( abs ‘ 𝐴 ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) |
| 212 |
151 61 152 173 211
|
lelttrd |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) |
| 213 |
|
ltdivmul |
⊢ ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) ) → ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ↔ ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 214 |
151 66 64 128 213
|
syl112anc |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ↔ ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) < ( ( ℜ ‘ ( 𝐵 / 𝐴 ) ) · 𝑅 ) ) ) |
| 215 |
212 214
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐵 / 𝐴 ) ) ) / ( ℜ ‘ ( 𝐵 / 𝐴 ) ) ) < 𝑅 ) |
| 216 |
150 215
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) ) < 𝑅 ) |
| 217 |
55 136 66 138 216
|
lelttrd |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) ) < 𝑅 ) |
| 218 |
51 217
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( log ‘ 𝐵 ) ) ) ) < 𝑅 ) |