| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 2 |
|
logcnlem.s |
⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 3 |
|
logcnlem.t |
⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) |
| 4 |
|
logcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 5 |
|
logcnlem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 6 |
|
logcnlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 7 |
|
logcnlem.l |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) |
| 8 |
|
pire |
⊢ π ∈ ℝ |
| 9 |
8
|
renegcli |
⊢ - π ∈ ℝ |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π ∈ ℝ ) |
| 11 |
1
|
ellogdm |
⊢ ( 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ+ ) ) ) |
| 12 |
11
|
simplbi |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 |
1
|
logdmn0 |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ≠ 0 ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 16 |
13 15
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 17 |
16
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 19 |
1
|
ellogdm |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 20 |
19
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 22 |
1
|
logdmn0 |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
| 23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 24 |
21 23
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 25 |
24
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 26 |
17 25
|
resubcld |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 28 |
13 15
|
logimcld |
⊢ ( 𝜑 → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) ) |
| 29 |
28
|
simpld |
⊢ ( 𝜑 → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 31 |
17
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 33 |
32
|
subid1d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 34 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 35 |
|
0red |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 ∈ ℝ ) |
| 36 |
|
argimlt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
| 37 |
21 36
|
sylan |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
| 38 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
| 40 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) |
| 41 |
34 35 18 40
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 42 |
33 41
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 43 |
10 18 27 30 42
|
lttrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 45 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 46 |
21 45
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 47 |
19
|
simprbi |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 48 |
4 47
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 49 |
46 48
|
sylbird |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ+ ) ) |
| 50 |
49
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ+ ) |
| 51 |
50
|
relogcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 52 |
51
|
reim0d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
| 54 |
31
|
subid1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 56 |
53 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 57 |
44 56
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 58 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
| 59 |
25
|
renegcld |
⊢ ( 𝜑 → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 61 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 62 |
|
argimgt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
| 63 |
21 62
|
sylan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
| 64 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 66 |
65
|
simprd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 67 |
|
ltneg |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 68 |
25 8 67
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 70 |
66 69
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 71 |
|
df-neg |
⊢ - ( ℑ ‘ ( log ‘ 𝐴 ) ) = ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 72 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 73 |
21 13
|
imsubd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 75 |
21 13
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 76 |
75
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 78 |
75
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 80 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 81 |
80
|
imcld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 82 |
|
absimle |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 83 |
75 82
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 84 |
76 78
|
absled |
⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ↔ ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) ) |
| 85 |
83 84
|
mpbid |
⊢ ( 𝜑 → ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) |
| 86 |
85
|
simprd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 88 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 90 |
21
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 91 |
90
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 92 |
91
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 94 |
89 93
|
ifclda |
⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 95 |
2 94
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 96 |
21
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 97 |
5
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 98 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 99 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 100 |
98 5 99
|
sylancr |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
| 101 |
97 100
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ ) |
| 102 |
96 101
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ ) |
| 103 |
3 102
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 104 |
95 103
|
ifcld |
⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ ) |
| 105 |
|
min1 |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) |
| 106 |
95 103 105
|
syl2anc |
⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) |
| 107 |
78 104 95 7 106
|
ltletrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 109 |
|
gt0ne0 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 110 |
90 109
|
sylan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 111 |
88 46
|
imbitrid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ+ → ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 112 |
111
|
necon3ad |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ¬ 𝐴 ∈ ℝ+ ) ) |
| 113 |
112
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ¬ 𝐴 ∈ ℝ+ ) |
| 114 |
|
iffalse |
⊢ ( ¬ 𝐴 ∈ ℝ+ → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 115 |
2 114
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ ℝ+ → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 116 |
113 115
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 117 |
110 116
|
syldan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 118 |
|
0re |
⊢ 0 ∈ ℝ |
| 119 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) |
| 120 |
118 90 119
|
sylancr |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) |
| 121 |
120
|
imp |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) |
| 122 |
81 121
|
absidd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 123 |
117 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( ℑ ‘ 𝐴 ) ) |
| 124 |
108 123
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 125 |
77 79 81 87 124
|
lelttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 126 |
74 125
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
| 127 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 128 |
127
|
subid1d |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 129 |
126 128
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
| 130 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 131 |
13
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 132 |
130 131 90
|
ltsub2d |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
| 134 |
129 133
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ 𝐵 ) ) |
| 135 |
|
argimgt0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐵 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) |
| 136 |
72 134 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) |
| 137 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) |
| 139 |
138
|
simpld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 140 |
130 17 25
|
ltsub1d |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 142 |
139 141
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 143 |
71 142
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 144 |
58 60 61 70 143
|
lttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 145 |
|
lttri4 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) |
| 146 |
90 118 145
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) |
| 147 |
43 57 144 146
|
mpjao3dan |
⊢ ( 𝜑 → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 148 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → π ∈ ℝ ) |
| 149 |
34
|
renegcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 150 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝐵 ∈ ℂ ) |
| 151 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 152 |
151
|
subid1d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 153 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 154 |
78
|
renegcld |
⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 156 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 157 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 158 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
| 159 |
118
|
ltnri |
⊢ ¬ 0 < 0 |
| 160 |
|
breq1 |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( ( ℑ ‘ 𝐴 ) < 0 ↔ 0 < 0 ) ) |
| 161 |
159 160
|
mtbiri |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ¬ ( ℑ ‘ 𝐴 ) < 0 ) |
| 162 |
161
|
necon2ai |
⊢ ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 163 |
162 116
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 164 |
|
ltle |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
| 165 |
90 118 164
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
| 166 |
165
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ≤ 0 ) |
| 167 |
153 166
|
absnidd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 168 |
163 167
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = - ( ℑ ‘ 𝐴 ) ) |
| 169 |
158 168
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < - ( ℑ ‘ 𝐴 ) ) |
| 170 |
157 153 169
|
ltnegcon2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < - ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 171 |
85
|
simpld |
⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 173 |
153 155 156 170 172
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
| 174 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 175 |
173 174
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 176 |
152 175
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
| 177 |
150
|
imcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 178 |
177 35 153
|
ltsub2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐵 ) < 0 ↔ ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) ) |
| 179 |
176 178
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) < 0 ) |
| 180 |
|
argimlt0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) |
| 181 |
150 179 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) |
| 182 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) |
| 183 |
181 182
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) |
| 184 |
183
|
simprd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) |
| 185 |
18 35 34 184
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 186 |
185 71
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 187 |
39
|
simpld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 188 |
|
ltnegcon1 |
⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 189 |
8 34 188
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 190 |
187 189
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 191 |
27 149 148 186 190
|
lttrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
| 192 |
27 148 191
|
ltled |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 193 |
28
|
simprd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
| 195 |
56 194
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 196 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 197 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 198 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
| 199 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 200 |
65
|
simpld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 201 |
198 199 197 200
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
| 202 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 203 |
202
|
subid1d |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 204 |
201 203
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
| 205 |
138
|
simprd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) |
| 206 |
61 197 196 204 205
|
lttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
| 207 |
61 196 206
|
ltled |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 208 |
192 195 207 146
|
mpjao3dan |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 209 |
147 208
|
jca |
⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |