Step |
Hyp |
Ref |
Expression |
1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
2 |
|
gt0ne0 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
4 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) |
5 |
|
im0 |
⊢ ( ℑ ‘ 0 ) = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
7 |
6
|
necon3i |
⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
8 |
3 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
9 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
11 |
10
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ 𝐴 ) ) |
13 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
16 |
15
|
mul01d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 ) |
17 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
18 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
19 |
8 18
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
20 |
19
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
21 |
17 15 20
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
22 |
14 21
|
immul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
23 |
17 15 20
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℑ ‘ 𝐴 ) ) |
25 |
22 24
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℑ ‘ 𝐴 ) ) |
26 |
12 16 25
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
27 |
|
0re |
⊢ 0 ∈ ℝ |
28 |
27
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
29 |
21
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
30 |
28 29 19
|
ltmul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) ) |
31 |
26 30
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
32 |
|
efiarg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
33 |
8 32
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
35 |
31 34
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
36 |
|
resinval |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
37 |
11 36
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
38 |
35 37
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
39 |
11
|
resincld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
40 |
39
|
lt0neg2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
41 |
38 40
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) |
42 |
|
pire |
⊢ π ∈ ℝ |
43 |
|
readdcl |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) |
44 |
11 42 43
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) |
46 |
|
df-neg |
⊢ - π = ( 0 − π ) |
47 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
48 |
8 47
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
49 |
48
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
50 |
42
|
renegcli |
⊢ - π ∈ ℝ |
51 |
|
ltle |
⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
52 |
50 11 51
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
53 |
49 52
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
54 |
46 53
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
55 |
42
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
56 |
28 55 11
|
lesubaddd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( 0 − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) |
57 |
54 56
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) |
59 |
11 28 55
|
leadd1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ ( 0 + π ) ) ) |
60 |
59
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ ( 0 + π ) ) |
61 |
|
picn |
⊢ π ∈ ℂ |
62 |
61
|
addid2i |
⊢ ( 0 + π ) = π |
63 |
60 62
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ π ) |
64 |
27 42
|
elicc2i |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) ↔ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ∧ 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∧ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ π ) ) |
65 |
45 58 63 64
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) ) |
66 |
|
sinq12ge0 |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) |
68 |
11
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
69 |
|
sinppi |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
70 |
68 69
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
72 |
67 71
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
73 |
72
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 → 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
74 |
73
|
con3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) → ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) |
75 |
39
|
renegcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
76 |
|
ltnle |
⊢ ( ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ↔ ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
77 |
75 27 76
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ↔ ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
78 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) |
79 |
27 11 78
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) |
80 |
74 77 79
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
81 |
41 80
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
82 |
48
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
83 |
|
rpre |
⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
84 |
83
|
renegcld |
⊢ ( - 𝐴 ∈ ℝ+ → - - 𝐴 ∈ ℝ ) |
85 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
86 |
85
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - - 𝐴 = 𝐴 ) |
87 |
86
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
88 |
84 87
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
89 |
|
lognegb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
90 |
8 89
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
91 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
93 |
88 90 92
|
3imtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ℑ ‘ 𝐴 ) = 0 ) ) |
94 |
93
|
necon3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) ) |
95 |
3 94
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
96 |
95
|
necomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ≠ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
97 |
11 55 82 96
|
leneltd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
98 |
|
0xr |
⊢ 0 ∈ ℝ* |
99 |
42
|
rexri |
⊢ π ∈ ℝ* |
100 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) ) |
101 |
98 99 100
|
mp2an |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
102 |
11 81 97 101
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |