Metamath Proof Explorer


Theorem logcnlem5

Description: Lemma for logcn . (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion logcnlem5 xDlogx:Dcn

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 difss −∞0
3 1 2 eqsstri D
4 ax-resscn
5 eqid xDlogx=xDlogx
6 1 ellogdm xDxxx+
7 6 simplbi xDx
8 1 logdmn0 xDx0
9 7 8 logcld xDlogx
10 9 imcld xDlogx
11 5 10 fmpti xDlogx:D
12 eqid ify+yy=ify+yy
13 eqid yz1+z=yz1+z
14 simpl yDz+yD
15 simpr yDz+z+
16 1 12 13 14 15 logcnlem2 yDz+ifify+yyyz1+zify+yyyz1+z+
17 simpll yDwDz+yw<ifify+yyyz1+zify+yyyz1+zyD
18 simprl yDwDz+yw<ifify+yyyz1+zify+yyyz1+zz+
19 simplr yDwDz+yw<ifify+yyyz1+zify+yyyz1+zwD
20 simprr yDwDz+yw<ifify+yyyz1+zify+yyyz1+zyw<ifify+yyyz1+zify+yyyz1+z
21 1 12 13 17 18 19 20 logcnlem4 yDwDz+yw<ifify+yyyz1+zify+yyyz1+zlogylogw<z
22 21 expr yDwDz+yw<ifify+yyyz1+zify+yyyz1+zlogylogw<z
23 2fveq3 x=ylogx=logy
24 fvex logyV
25 23 5 24 fvmpt yDxDlogxy=logy
26 25 ad2antrr yDwDz+xDlogxy=logy
27 2fveq3 x=wlogx=logw
28 fvex logwV
29 27 5 28 fvmpt wDxDlogxw=logw
30 29 ad2antlr yDwDz+xDlogxw=logw
31 26 30 oveq12d yDwDz+xDlogxyxDlogxw=logylogw
32 31 fveq2d yDwDz+xDlogxyxDlogxw=logylogw
33 32 breq1d yDwDz+xDlogxyxDlogxw<zlogylogw<z
34 22 33 sylibrd yDwDz+yw<ifify+yyyz1+zify+yyyz1+zxDlogxyxDlogxw<z
35 11 16 34 elcncf1ii DxDlogx:Dcn
36 3 4 35 mp2an xDlogx:Dcn