Metamath Proof Explorer


Theorem logdmn0

Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion logdmn0 ADA0

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 0nrp ¬0+
3 0re 0
4 1 ellogdm 0D000+
5 4 simprbi 0D00+
6 3 5 mpi 0D0+
7 2 6 mto ¬0D
8 eleq1 A=0AD0D
9 7 8 mtbiri A=0¬AD
10 9 necon2ai ADA0