Metamath Proof Explorer


Theorem logdmnrp

Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion logdmnrp AD¬A+

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 eldifn A−∞0¬A−∞0
3 2 1 eleq2s AD¬A−∞0
4 rpre A+A
5 1 ellogdm ADAAA+
6 5 simplbi ADA
7 negreb AAA
8 6 7 syl ADAA
9 4 8 imbitrid ADA+A
10 9 imp ADA+A
11 10 mnfltd ADA+−∞<A
12 rpgt0 A+0<A
13 12 adantl ADA+0<A
14 10 lt0neg1d ADA+A<00<A
15 13 14 mpbird ADA+A<0
16 0re 0
17 ltle A0A<0A0
18 10 16 17 sylancl ADA+A<0A0
19 15 18 mpd ADA+A0
20 mnfxr −∞*
21 elioc2 −∞*0A−∞0A−∞<AA0
22 20 16 21 mp2an A−∞0A−∞<AA0
23 10 11 19 22 syl3anbrc ADA+A−∞0
24 3 23 mtand AD¬A+