Metamath Proof Explorer


Theorem logdmn0

Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d
|- D = ( CC \ ( -oo (,] 0 ) )
Assertion logdmn0
|- ( A e. D -> A =/= 0 )

Proof

Step Hyp Ref Expression
1 logcn.d
 |-  D = ( CC \ ( -oo (,] 0 ) )
2 0nrp
 |-  -. 0 e. RR+
3 0re
 |-  0 e. RR
4 1 ellogdm
 |-  ( 0 e. D <-> ( 0 e. CC /\ ( 0 e. RR -> 0 e. RR+ ) ) )
5 4 simprbi
 |-  ( 0 e. D -> ( 0 e. RR -> 0 e. RR+ ) )
6 3 5 mpi
 |-  ( 0 e. D -> 0 e. RR+ )
7 2 6 mto
 |-  -. 0 e. D
8 eleq1
 |-  ( A = 0 -> ( A e. D <-> 0 e. D ) )
9 7 8 mtbiri
 |-  ( A = 0 -> -. A e. D )
10 9 necon2ai
 |-  ( A e. D -> A =/= 0 )